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Evidence Explanation in Bayesian Networks
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A Bayesian Network

Tuberculosis Lung Cancer

Visit to Asia Q—> Smoking
Tub. or Lung Cancer

Bronchitis

Abnormal X-Rays Dyspnea

Evidence explanation task: why do we observe X = x!

. Observed (instantiatedf).'- vari o . Explanandum (observed)



- Evidence Explanation

® Explanation = Set of variable assighments; e.g.,
“Z =2z,Y =y explain X = x.” Call the explanation H = h

® Which explanatory variables to choose!

® Which assignments to choose!

Interventionist desideratum: Intervening on the network
according to the explanation favors the explanandum

POX = x) < P(X = x | do(H = h))

To evaluate do-expression, we require a causal Bayesian
network
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Other Approaches to Explanation:

e Pearl's (1988) Most Probable Explanation (MPE).
Find configuration that maximizes P( all unobserved | all observed )

® FEasy to compute

® No distinction explanandum/observation; long, sensitive
explanations
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e Pearl's (1988) Most Probable Explanation (MPE).
Find configuration that maximizes P( all unobserved | all observed )

® FEasy to compute
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‘Other Approaches to Explanations

IV y -
e

° 'PartiaiwAbduction:
Maximize > . cudea P( Unobserved, excluded | all observed )
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® More targeted explanations. Not as easy to compute as MPE

® No distinction explanandum/observation; how to choose the
excluded variables?
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Other Approaches to Explanations

e Partial Abduction (continued)

Maximize Zexduded P( unobserved, excluded | all observed )

Yuan and Lu (2007): subset search for the excluded variables;
explanations ranked by Bayes’ Factor

p(H = h | observed)
| — p(H = h | observed)

BF(h) =

® Concise explanations

® Scalability concerns, no distinction explanandum/observation

e MPE/Partial abduction: Use p(H = h | observed) criterion

® We think p(explanandum | H = h) is more intuitive;
p(explanandum | do(H = h)) even more so




Building Causal Explanation Trees




Causal Relevance

Causal Information Flow (Ay & Polani, 2006):
causal counterpart of mutual information

Conditional mutual information:

IGY | Z = z) = 2, P(x|z) 2, P(y|x,Z) log PFEZ)lsz’?)

Causal information flow:

I(X =Y | do(Z = z)) = 2. P(x|do(z)) 2, P(y|do(x,Z)) log Pél{;’fjf(:ii

where P*(y|do(z)) = >, P(x'|do(z)) P(y|do(x,z))

I(X = Y| do(Z = z)) = 0 iff X is an ancestor of Y and there is a
directed path from X to Y not going through any node in Z.




usal Evidence Explanatior

Context: we observe V = yes, S = no, X = yes.
We want to explain X = yes.

‘X= yes‘

Find: explanation = Set of variable assignments.

. Observed variable . Exb.la‘




usal Evidence Explanation

Context: we observe V = yes, S = no, X = yes.
We want to explain X = yes.

V = yes %Xﬁ S=no
—0

‘X= yes‘

Find: explanation = Set of variable assignments.

. Observed variable . Exblé




- Causal Evidence Explanatior
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Causal Evidence Explanation

S

Context: we observe V = yes, S = no, X = yes.
We want to explain X = yes.

T =yes, T =no C =yes,C=no

V=yes©—> S =no
O =yes,0O=no
4—@

‘X=yes‘

Find: explanation = Set of variable assignments.

Exhaustive Search: 22-3° = 972 inferences of type P(X = x | do(Explanation))

‘ Observed variable . Explanandum ‘ Excluded variable



Explanation Trees.w
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Introduced by Flores (2005) in the context of partial
abduction

Allows compact representation of several explanations:
explanation is a path from the root to a leaf

Lung Cancer
Represents:

Lung Cancer = yes
Lung Cancer = no, Tuberculosis

Iuberculosis Lung Cancer = no, Tuberculosis

(label)

(label)



~ Building the Explanation Tree

Start with empty tree. Greedy selection: recursively select next node
as variable X that maximizes

(X = explanandum | observations, do(current path))

Add as outgoing edges the values for X

Stopping criterion: minimal additional causal information flow
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~ Buildi ng the Tree: Example |
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Building the Tree: Example
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Explain: Dyspnea = yes | Smoking = yes

Tuberculosis  Lung Cancer

Smoking

Tub. or Lung Cancer
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Abnormal X-Rays Dyspnea

Lung Cancer Lung Cancer
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O Selected explanatory variable
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-2.124 0.683 0.878
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Asia: Example |
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Explain: Dyspnea = yes | Smoking = yes

Visi Tuberculosis Lung Cancer
ISK:; Smoking Causal explanation tree
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-2.124 0.683 0.878
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Explain: Dyspnea = yes | Smoking = yes

Visi Tuberculosis Lung Cancer
ISK:-Z Smoking Causal explanation tree
|
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- Asia: Example |
Explain: Dyspnea = yes | Smoking = yes
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Visit to
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Asia Smoking P

Tub. or Lung Cancer
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P(X-Ray = normal, Lung cancer = no,
Tuberculosis = no | Dyspnea = yes) = 0.042 0.014 -2.124 0.683 0.878




- Asia: Example |
Explain: Dyspnea = yes | Smoking = yes

Tuberculosis Lung Cancer

Visit to Smoking Causal explanation tree
Asia

Tub. or Lung Cancer
Explanation Tree
Bronchitis

Abnormal X-Rays Dyspnea Bronchitis

abnormal normal

Bayes’ Factor 0.201

BF(Bronchitis = yes) = 6.4 O
BF(Bronchitis = yes, Visit to Asia = no) = 5.89 Lung Cancer Lung Cancer Lung Cancer

BF(Bronchitis = yes, Tuberculosis = no) = 5.84
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Asia: Example |

- Tuberculosis Lung Cancer
Visit to :
Asi Smoking
sia

Tub. or Lung Cancer

Explanation Tree
Bronchitis

Abnormal X-Rays Dyspnea

abnormal normal

Bayes’ Factor 0.201

BF(Bronchitis = yes) = 6.4 O
BF(Bronchitis = yes, Visit to Asia = no) = 5.89 Lung Cancer
BF(Bronchitis = yes, Tuberculosis = no) = 5.84

MPE

P(Bronchitis = yes, X-Ray = normal,
Lung cancer = no, Tuberculosis = no,
Smoker = yes, Visit to Asia = no,
TbOrCa = no | Dyspnea = yes) = 0.46

0.042 ; -2.124

Explain: Dyspnea = yes | Smoking = yes

Causal explanation tree

Bronchitis

Lung Cancer Lung Cancer

0.683 0.878
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Explain: X-Ray = abnormal
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Asia: Example I

Explain: X-Ray = abnormal

- Tuberculosis Lung Cancer

Visit to :

Asi Smoking
sia
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Causal explanation tree
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Asia: Example Il

TR RRRRDE—————

Explain: X-Ray = abnormal

- Tuberculosis Lung Cancer

Visit to :

Asi Smoking
sia

Tub. or Lung Cancer

Explanation Tree Causal explanation tree
Bronchitis

Abnormal X-Rays Dyspnea Lung Cancer Lung Cancer
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Explain: X-Ray = abnormal

- Tuberculosis Lung Cancer
Visit to

Asia Smoking
Tub. or Lung Cancer
Explanation Tree Causal explanation tree
Bronchitis

Abnormal X-Rays Dyspnea Lung Cancer Lung Cancer

Bayes’ Factor

BF(TbOrCa = yes) = 19.60 ;
BF(TbOrCa = yes, Visit to Asia = no) = 19.21 Dyspnea Tuberculosis
BF(TbOrCa = yes, Lung cancer = yes) = 16.42 '




~ Asia: Example Il

Explain: X-Ray = abnormal

- Tuberculosis Lung Cancer
Visit to :
Asi Smoking
sia

Tub. or Lung Cancer

Explanation Tree Causal explanation tree
Bronchitis

Abnormal X-Rays Dyspnea Lung Cancer Lung Cancer

Bayes’ Factor

BF(TbOrCa = yes) = 19.60 ;
BF(TbOrCa = yes, Visit to Asia = no) = 19.21 Dyspnea Tuberculosis
BF(TbOrCa = yes, Lung cancer = yes) = 16.42 '

MPE
P(Bronchitis = yes, Dyspnea = yes,
Lung cancer = yes, TbOrCa = yes,
Smoker = yes, Tuberculosis = yes,
Visit to Asia = no | X-Ray = abnormal) = 0.24




AND OVER THERE WE HAVE THE LABYRINTH GUARDS.
ONE ALWAYS LIES, ONE ALWAYS TELLS THE TRUTH, AND
ONE STABS PEOPLE WHO ASK TRICKY QUESTIONS.
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