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Evidence explanation task:  why do we observe X = x?



Evidence Explanation

• Explanation = Set of variable assignments; e.g.,
“Z = z, Y = y explain X = x.” Call the explanation H = h

• Which explanatory variables to choose?

• Which assignments to choose?

• Interventionist desideratum: Intervening on the network 
according to the explanation favors the explanandum

P(X = x) < P(X = x | do(H = h))

• To evaluate do-expression, we require a causal Bayesian 
network



Why Causality Here?
• Natural to explain effects with causes

• Leads to intervention rules:  “A ‘good’ way to obtain X = x is to
intervene on the system, setting H = h.”
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Other Approaches to Explanations
• Pearl’s (1988) Most Probable Explanation (MPE):

Find configuration that maximizes P( all unobserved | all observed )

• Easy to compute

• No distinction explanandum/observation; long, sensitive 
explanations
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Other Approaches to Explanations
• Partial Abduction:

Maximize ∑excluded P( unobserved, excluded | all observed )

• More targeted explanations. Not as easy to compute as MPE

• No distinction explanandum/observation; how to choose the 
excluded variables?
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Other Approaches to Explanations
• Partial Abduction (continued)

Maximize ∑excluded P( unobserved, excluded | all observed )

• Yuan and Lu (2007): subset search for the excluded variables;
explanations ranked by Bayes’ Factor

BF(h) =  ——————————

• Concise explanations

• Scalability concerns, no distinction explanandum/observation

p(H = h | observed)
1 – p(H = h | observed)

• MPE/Partial abduction: Use p(H = h | observed) criterion

• We think    p(explanandum | H = h)       is more intuitive;
                 p(explanandum | do(H = h))  even more so



How?

Building Causal Explanation Trees

Explanation Trees for Causal Bayesian Networks
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Causal Relevance

• Causal Information Flow (Ay & Polani, 2006):
causal counterpart of mutual information

• Conditional mutual information:

I(X, Y | Z = z) = ∑x P(x|z) ∑y P(y|x,z) log ———

• Causal information flow:

I(X → Y | do(Z = z)) = ∑x P(x|do(z)) ∑y P(y|do(x,z)) log —————

• I(X → Y | do(Z = z)) ≥ 0 iff X is an ancestor of Y and there is a 
directed path from X to Y not going through any node in Z.

P(y|do(x,z))
P*(y|do(z))

P(y|x,z)
P(y|z)

where  P*(y|do(z)) = ∑x' P(x'|do(z)) P(y|do(x',z))
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Explanation Trees

• Introduced by Flores (2005) in the context of partial 
abduction

• Allows compact representation of several explanations: 
explanation is a path from the root to a leaf

Lung Cancer

Tuberculosis

yesno

no yes

(label)

(label)(label)

Represents:
Lung Cancer = yes
Lung Cancer = no, Tuberculosis = yes
Lung Cancer = no, Tuberculosis = no



Building the Explanation Tree

• Start with empty tree. Greedy selection: recursively select next node 
as variable X that maximizes

I(X → explanandum | observations, do(current path))

• Add as outgoing edges the values for X

• Stopping criterion: minimal additional causal information flow

P(explanandum | observations, do(explanation))• Label leaves with log ——————————————————

• Label is ≥ 0 for good explanations
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