UAI 2008

Explanation Trees for Causal Bayesian Networks

Ulf H. Nielsen,¹ Jean-Philippe Pellet,^{1,2} and André Elisseeff¹

July 11th, 2008

¹ Data Analytics Group IBM Zurich Research Lab ² Pattern Analysis & Machine Learning Group ETH Zurich

Outline

• What?

Evidence Explanations in Bayesian Networks

• How?

Building Causal Explanation Trees

• So What?

Comparisons

Explanation Trees for Causal Bayesian Networks

What?

Evidence Explanation in Bayesian Networks

Observed (instantiated) variable

Inference task: find P(Target | Observed) = P(T | V, S, X)

Observed (instantiated) variable

Observed (instantiated) variable

Evidence explanation task: why do we observe X = x?

Observed (instantiated) variable

Evidence Explanation

- Explanation = Set of variable assignments; e.g., "Z = z, Y = y explain X = x." Call the explanation H = h
 - Which explanatory variables to choose?
 - Which assignments to choose?

 Interventionist desideratum: Intervening on the network according to the explanation favors the explanandum

$$P(X = x) < P(X = x \mid do(H = h))$$

• To evaluate do-expression, we require a causal Bayesian network

• Natural to explain effects with causes

Natural to explain effects with causes

Explanandum

Leads to intervention rules: "A 'good' way to obtain X = x is to intervene on the system, setting H = h."

Natural to explain effects with causes

Leads to intervention rules: "A 'good' way to obtain X = x is to intervene on the system, setting H = h."

Natural to explain effects with causes

Leads to intervention rules: "A 'good' way to obtain X = x is to intervene on the system, setting H = h."

- Pearl's (1988) Most Probable Explanation (MPE):
 Find configuration that maximizes P(all unobserved | all observed)
 - Easy to compute
 - No distinction explanandum/observation; long, sensitive explanations

- Pearl's (1988) Most Probable Explanation (MPE):
 Find configuration that maximizes P(all unobserved | all observed)
 - Easy to compute
 - No distinction explanandum/observation; long, sensitive explanations

• Partial Abduction:

Maximize $\sum_{\text{excluded}} P(\text{unobserved}, \text{excluded} \mid \text{all observed})$

- More targeted explanations. Not as easy to compute as MPE
- No distinction explanandum/observation; how to choose the excluded variables?

• Partial Abduction:

Maximize $\sum_{\text{excluded}} P(\text{unobserved}, \text{excluded} \mid \text{all observed})$

- More targeted explanations. Not as easy to compute as MPE
- No distinction explanandum/observation; how to choose the excluded variables?

• **Partial Abduction** (continued)

Maximize $\sum_{\text{excluded}} P(\text{unobserved}, \text{excluded} \mid \text{all observed})$

 Yuan and Lu (2007): subset search for the excluded variables; explanations ranked by Bayes' Factor

$$BF(h) = \frac{P(H = h \mid observed)}{I - P(H = h \mid observed)}$$

- Concise explanations
- Scalability concerns, no distinction explanandum/observation
- MPE/Partial abduction: Use p(H = h | observed) criterion
 - We think p(explanandum | H = h) is more intuitive; p(explanandum | do(H = h)) even more so

Explanation Trees for Causal Bayesian Networks

How?

н

Building Causal Explanation Trees

Causal Relevance

- Causal Information Flow (Ay & Polani, 2006): causal counterpart of mutual information
- Conditional mutual information:

$$I(X, \mathbf{Y} \mid \mathbf{Z} = \mathbf{z}) = \sum_{x} P(x \mid \mathbf{z}) \sum_{y} P(y \mid x, \mathbf{z}) \log \frac{P(y \mid x, \mathbf{z})}{P(y \mid \mathbf{z})}$$

• Causal information flow:

$$I(X \to Y \mid do(\mathbb{Z} = \mathbb{z})) = \sum_{x} P(x \mid do(\mathbb{z})) \sum_{y} P(y \mid do(x, \mathbb{z})) \log \frac{P(y \mid do(x, \mathbb{z}))}{P^{*}(y \mid do(\mathbb{z}))}$$

where $P^*(\mathbf{y}|do(\mathbf{z})) = \sum_{x'} P(x'|do(\mathbf{z})) P(\mathbf{y}|do(x',\mathbf{z}))$

• $I(X \rightarrow Y \mid do(\mathbb{Z} = \mathbb{Z})) \ge 0$ iff X is an ancestor of Y and there is a directed path from X to Y not going through any node in \mathbb{Z} .

Context: we observe V = yes, S = no, X = yes. We want to explain X = yes.

Find: explanation = Set of variable assignments.

Observed variable

Context: we observe V = yes, S = no, X = yes. We want to explain X = yes.

Find: explanation = Set of variable assignments.

Observed variable

Find: explanation = Set of variable assignments.

Observed variable

Find: explanation = Set of variable assignments.

Exhaustive Search: $2^2 \cdot 3^5 = 972$ inferences of type $P(X = x \mid do(Explanation))$

Observed variable

Find: explanation = Set of variable assignments.

Exhaustive Search: $2^2 \cdot 3^5 = 972$ inferences of type $P(X = x \mid do(Explanation))$

Observed variable

Explanation Trees

- Introduced by Flores (2005) in the context of partial abduction
- Allows compact representation of several explanations: explanation is a path from the root to a leaf

Represents: Lung Cancer = yes Lung Cancer = no, Tuberculosis = yes Lung Cancer = no, Tuberculosis = no

Building the Explanation Tree

 Start with empty tree. Greedy selection: recursively select next node as variable X that maximizes

I(X → explanandum | observations, do(current path))

- Add as outgoing edges the values for X
- Stopping criterion: minimal additional causal information flow

Explain: Dyspnea = yes | Smoking = yes

Explain: Dyspnea = yes | Smoking = yes

 $\arg \max_X I(X \rightarrow D = yes | S = yes)$

Observed variable
 Explanandum
 Candidate explanatory variable
 Selected explanatory variable

Explain: *Dyspnea* = yes | *Smoking* = yes

Smoking

Explain: Dyspnea = yes | Smoking = yes

Explain: *Dyspnea* = yes | *Smoking* = yes

Explanandum

Candidate explanatory variable

Selected explanatory variable

Explain: *Dyspnea* = yes | *Smoking* = yes

Explain: Dyspnea = yes | Smoking = yes

Explain: Dyspnea = yes | Smoking = yes

Explain: Dyspnea = yes | Smoking = yes

Explain: *Dyspnea* = yes | *Smoking* = yes

Explain: Dyspnea = yes | Smoking = yes

- Selected explanatory variable
- Excluded variable (modelling artifact)

Explanation Trees for Causal Bayesian Networks

So What?

Comparisons

Thank you!

xkcd.com