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Where does the leash come from?Where does the leash come from?Where does the leash come from?Where does the leash come from?
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OutlineOutlineOutlineOutline

� Formal Problem Statement and Notation

� Explanation, Part I 

� Explanation, Part II
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Review: Review: Review: Review: DirchletDirchletDirchletDirchlet Prior and Prior and Prior and Prior and BDeuBDeuBDeuBDeu score score score score 

� random variables with multinomial distribution
� Bayesian network model: 

� Dirichlet prior over model parameters:
� … is conjugate prior
� … ensures likelihood equivalence [Heckerman et al., ’95]
�

� where:
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Review: Review: Review: Review: DirchletDirchletDirchletDirchlet Prior and Prior and Prior and Prior and BDeuBDeuBDeuBDeu score (contscore (contscore (contscore (cont’’’’d) d) d) d) 

Scoring function for graph G : marginal likelihood 

BDeu Score [Buntine, 1991]: 
� choose q uniform
� ESS is the only free parameter in scoring 

function:
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Result: How many Edges ?Result: How many Edges ?Result: How many Edges ?Result: How many Edges ?

Experiments [Silander et al., UAI 2007]:

Part I: 
large ESS

Steck & Jaakkola, 
NIPS 2002 Part II: 

‘optimal’ ESS

empty graph

complete graph

‘optimal’
graph
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� Formal Problem Statement and Notation

� Part I: Large Equivalent Sample SizePart I: Large Equivalent Sample SizePart I: Large Equivalent Sample SizePart I: Large Equivalent Sample Size

� Part II: ‘Optimal’ Equivalent Sample Size
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Absolute Score Absolute Score Absolute Score Absolute Score ----> Relative Score> Relative Score> Relative Score> Relative Score
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log Bayes Factor (log BF):
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Absolute Score Absolute Score Absolute Score Absolute Score ----> Relative Score> Relative Score> Relative Score> Relative Score

Π

log Bayes Factor (log BF):

log BF> 0  � edge present � A,B    dependent cond. on 

log BF< 0  � edge absent  � A,B independent cond. on 
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BayesBayesBayesBayes Factor for large & finite ESSFactor for large & finite ESSFactor for large & finite ESSFactor for large & finite ESS

Leading-order Taylor-expansion for                :N>>α

where

�
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new Uniformity Measure new Uniformity Measure new Uniformity Measure new Uniformity Measure U U U U 
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Presence of Edge A <Presence of Edge A <Presence of Edge A <Presence of Edge A <---- B B B B 

� In words:   For sufficiently large ESS, 
A <- B present if implies
� notable dependence between A and B given
� OR OR OR OR notable skewness of both distributions

and
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� cf. AIC                                :           
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SkewnessSkewnessSkewnessSkewness ------------ An Intuitive ExplanationAn Intuitive ExplanationAn Intuitive ExplanationAn Intuitive Explanation

Average as regularized parameter estimate:

… weighted sum of uniform prior q and  
(skewed) empirical distribution

=> In general: dependence   
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OutlineOutlineOutlineOutline

� Formal Problem Statement and Notation

� Part I: Large Equivalent Sample Size

� Part II: Part II: Part II: Part II: ‘‘‘‘OptimalOptimalOptimalOptimal’’’’ Equivalent Sample Size:Equivalent Sample Size:Equivalent Sample Size:Equivalent Sample Size:

What properties of the data determine the What properties of the data determine the What properties of the data determine the What properties of the data determine the 
value of the optimal ESS?value of the optimal ESS?value of the optimal ESS?value of the optimal ESS?
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‘‘‘‘OptimalOptimalOptimalOptimal’’’’ ESSESSESSESS
� ESS treated as an additional parameter to 

be learned
� Objective [Silander et al., UAI 2007]:

� Coordinate-wise ascent:
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Marginal likelihood :  predictive accuracy in
prequential sense [Dawid,’84] :

AIC = training error 
+ penalty                        

true distribution has form:                

(frequentist) test error 

Approximation of optimal ESSApproximation of optimal ESSApproximation of optimal ESSApproximation of optimal ESS
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Denominator is positive for uniform q :

Approximation for optimal ESS given graph G :           

Approximation of optimal ESSApproximation of optimal ESSApproximation of optimal ESSApproximation of optimal ESS
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Large skewness or dependences in data:
⇒ large ML
⇒ optimal ESS is small          

Approximation for optimal ESS given graph G :           

Properties of optimal ESSProperties of optimal ESSProperties of optimal ESSProperties of optimal ESS
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Sample size N : has no explicit impact 
⇒ for large N, we have       const≈

*
α

Approximation for optimal ESS given graph G :           

Properties of optimal ESSProperties of optimal ESSProperties of optimal ESSProperties of optimal ESS
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Approximation for optimal ESS given graph G :           

Number n of nodes in graph:
enumerator and denominator are additive in 
the number of nodes

⇒ optimal ESS approx. unaffected by n

Properties of optimal ESSProperties of optimal ESSProperties of optimal ESSProperties of optimal ESS
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Experimental Validation of ApproximationsExperimental Validation of ApproximationsExperimental Validation of ApproximationsExperimental Validation of Approximations

has correct order of
magnitude

*
α

Comparison to exact 
results from [Silander
et al., UAI 2007] :

=>
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ConclusionsConclusionsConclusionsConclusions

� large ESS:
even if data and prior imply independence, the 
completecompletecompletecomplete graph may have the highest marginal 
likelihood.

� ‘optimal’ ESS: 
�approx. independent of sample size and number 

of nodes
�… is small if strong skewness or dependencies 

in data 
�… is large if small skewness and weak 

dependencies in data 


