Identifying Dynamic Sequential Plans

Jin Tian jtian@cs.iastate.edu (Presented by George Voutsadakis)

Department of Computer Science Iowa State University, Ames, IA 50011, USA

The 24th Conference on Uncertainty in Artificial Intelligence

Outline

Background

- Bayesian Networks
- Causal Bayesian Networks
- Atomic Interventions and Causal Effects

Sequential Decision Plans and Intervention Strategies

- Sequential Decision Plans
- Intervention Strategies; The Intervention Graph

3 The Identifiability Problem

- Definition of Identifiability
- The Main Theorem

4 Conclusions

Bayesian Networks

A **Bayesian network** $G = \langle W, E \rangle$ is a directed graph.

- Nodes represent variables;
- Edges represent conditional independences: each variable is independent of all its non-descendants given its direct parents in *G*.

Figure: A Bayesian Network.

 $P(y, z, x_1, x_2, u) = P(y|x_1, x_2, z)P(z|x_2, u)P(x_1|u)P(x_2)P(u).$ $P(y, z, x_1, x_2) = \sum_{u} P(y|x_1, x_2, z)P(z|x_2, u)P(x_1|u)P(x_2)P(u).$

Causal Bayesian Networks

A causal Bayesian network G is a Bayesian network, such that, in equation

$$\mathcal{P}^{M}(w) = \prod_{W_i \in W} \mathcal{P}^{M}(w_i | ext{pa}_{w_i})$$

Causal Bayesian Networks

A causal Bayesian network G is a Bayesian network, such that, in equation

$$\mathcal{P}^{M}(w) = \prod_{W_i \in W} \mathcal{P}^{M}(w_i | \mathrm{pa}_{w_i})$$

Causality: The stochastic variation of the assignment P^M(w_i|pa_{w_i}) is chosen in response to the values pa_{w_i} and is independent of the variations in all other assignments;

Causal Bayesian Networks

A causal Bayesian network G is a Bayesian network, such that, in equation

$$\mathcal{P}^{M}(w) = \prod_{W_i \in W} \mathcal{P}^{M}(w_i | \mathrm{pa}_{w_i})$$

- Causality: The stochastic variation of the assignment P^M(w_i|pa_{w_i}) is chosen in response to the values pa_{w_i} and is independent of the variations in all other assignments;
- Odularity: Each assignment remains invariant under possible changes in the assignments governing other variables in the system.

Atomic Interventions

Atomic intervention do(X_i = x_i^{*}) to a variable X_i in a Bayesian network: For some fixed value x_i^{*},

$$P(x_i | \text{pa}_{x_i}) = \delta(x_i, x_i^*) := \begin{cases} 1, & \text{if } x_i = x_i^* \\ 0, & \text{otherwise} \end{cases}$$

.

Atomic Interventions

Atomic intervention do(X_i = x_i^{*}) to a variable X_i in a Bayesian network: For some fixed value x_i^{*},

$$P(x_i | ext{pa}_{x_i}) = \delta(x_i, x_i^*) := \left\{egin{array}{cc} 1, & ext{if } x_i = x_i^* \ 0, & ext{otherwise} \end{array}
ight.$$

Figure: Atomic Intervention on Z.

Causal Effects

• The **causal effect** $P_x(y)$ that an intervention on X has on the outcome variables Y can be computed by

$$P_{x}(y) = \begin{cases} \sum_{z,u} \prod_{Y_{i} \in Y} P(y_{i}| \mathrm{pa}_{y_{i}}) \prod_{Z_{i} \in Z} P(z_{i}| \mathrm{pa}_{z_{i}}) \prod_{U_{i} \in U} P(u_{i}| \mathrm{pa}_{u_{i}}), \\ & \text{if } y \text{ consistent with } x \\ 0, & \text{otherwise} \end{cases}$$

Causal Effects

• The **causal effect** $P_x(y)$ that an intervention on X has on the outcome variables Y can be computed by

$$P_{x}(y) = \begin{cases} \sum_{z,u} \prod_{Y_{i} \in Y} P(y_{i}|\operatorname{pa}_{y_{i}}) \prod_{Z_{i} \in Z} P(z_{i}|\operatorname{pa}_{z_{i}}) \prod_{U_{i} \in U} P(u_{i}|\operatorname{pa}_{u_{i}}), \\ & \text{if } y \text{ consistent with } x \\ 0, & \text{otherwise} \end{cases}$$

Figure: Atomic Interventions and Causal Effects.

$$P_{x_1^*,x_2^*}(y) = \sum_{z,u} P(y|x_1^*,x_2^*,z) P(z|x_2^*,u) P(u).$$

A sequential decision plan $S = \langle G, \langle X, Y, Z \rangle \rangle$ consists of

A sequential decision plan $S = \langle G, \langle X, Y, Z \rangle \rangle$ consists of

• a Bayesian network with unobservable variables $G = \langle V \cup U, E \rangle$;

A sequential decision plan $S = \langle G, \langle X, Y, Z \rangle \rangle$ consists of

- a Bayesian network with unobservable variables $G = \langle V \cup U, E \rangle$;
- A partition $V = X \cup Y \cup Z$ of its set of observable variables into
 - a set X of action variables,
 - a set Y of outcome variables and
 - a set Z of covariate variables;

A sequential decision plan $S = \langle G, \langle X, Y, Z \rangle \rangle$ consists of

- a Bayesian network with unobservable variables $G = \langle V \cup U, E \rangle$;
- A partition $V = X \cup Y \cup Z$ of its set of observable variables into
 - a set X of action variables,
 - a set Y of outcome variables and
 - a set Z of covariate variables;

• An intervention strategy $\sigma_X = {\sigma_{X_i}}_{X_i \in X}$.

A sequential decision plan $S = \langle G, \langle X, Y, Z \rangle \rangle$ consists of

- a Bayesian network with unobservable variables $G = \langle V \cup U, E \rangle$;
- A partition $V = X \cup Y \cup Z$ of its set of observable variables into
 - a set X of action variables,
 - a set Y of outcome variables and
 - a set Z of covariate variables;
- An intervention strategy $\sigma_X = \{\sigma_{X_i}\}_{X_i \in X}$.

Several kinds of intervention strategies may be applied to the action variables.

Each intervention to the action variables may be of one of the following types:

• Idle Intervention: $P(x_i | pa_{x_i}; \sigma_{X_i}) = P(x_i | pa_{x_i}).$

Each intervention to the action variables may be of one of the following types:

- Idle Intervention: $P(x_i | pa_{x_i}; \sigma_{X_i}) = P(x_i | pa_{x_i}).$
- Atomic Intervention: $P(x_i | \text{pa}_{x_i}; \sigma_{X_i} = \text{do}(x_i^*)) = \delta(x_i, x_i^*)$

Each intervention to the action variables may be of one of the following types:

- Idle Intervention: $P(x_i | pa_{x_i}; \sigma_{X_i}) = P(x_i | pa_{x_i}).$
- Atomic Intervention: $P(x_i | \text{pa}_{x_i}; \sigma_{X_i} = \text{do}(x_i^*)) = \delta(x_i, x_i^*)$
- Conditional Intervention: $P(x_i | \text{pa}_{x_i}; \sigma_{X_i} = \text{do}(g(c))) = \delta(x_i, g(c))$, where $g(\cdot)$ is a prespecified deterministic function and the variables in C cannot be descendants of X_i .

Each intervention to the action variables may be of one of the following types:

- Idle Intervention: $P(x_i | pa_{x_i}; \sigma_{X_i}) = P(x_i | pa_{x_i}).$
- Atomic Intervention: $P(x_i | pa_{x_i}; \sigma_{X_i} = do(x_i^*)) = \delta(x_i, x_i^*)$
- Conditional Intervention: $P(x_i | \text{pa}_{x_i}; \sigma_{X_i} = \text{do}(g(c))) = \delta(x_i, g(c))$, where $g(\cdot)$ is a prespecified deterministic function and the variables in C cannot be descendants of X_i .
- Random Intervention: $P(x_i | pa_{x_i}; \sigma_{X_i} = d_C) = P^*(x_i | c)$, where $P^*(x_i | c)$ is a prespecified probability distribution and the variables in C cannot be descendants of X_i .

The Intervention Graph G_{σ_X}

Consider the top graph G below. Suppose that we follow the intervention strategies: $\sigma_{X_1} = \operatorname{do}(g_1(Z_1)), \sigma_{X_2} = d_{Z_2}, \sigma_{X_3} = \operatorname{do}(g_3(Z_2, Z_3)).$

The Intervention graph G_{σ_X} corresponding to $\sigma_X = \{\sigma_{X_1}, \sigma_{X_2}, \sigma_{X_3}\}$ is the graph given at the bottom above.

Example:

Figure: Sequential Decision Plans.

$$P(v) = \sum_{u} P(y|x_1, x_2, z) P(z|x_2, u) P(x_1|u) P(x_2) P(u).$$

$$P(v; \sigma_X) = \sum_{u} P(y|x_1, x_2, z) P(z|x_2, u) P(x_1|u; \sigma_{X_1}) P(x_2; \sigma_{X_2}) P(u).$$

$$P(y; \sigma_X) = \sum_{x_1, x_2, z, u} P(y|x_1, x_2, z) P(z|x_2, u) P(x_1|u; \sigma_{X_1}) P(x_2; \sigma_{X_2}) P(u).$$
In Tion (SU) Identifying Dynamic Sequential Plans

Definition of Identifiability

• **Identifiability** means that the join probability distribution of the observable variables (without interventions) uniquely determines the post-interventional join probability distribution of the outcome variables:

$$P^{M_1}(v) = P^{M_2}(v)$$
 implies $P^{M_1}(y;\sigma_X) = P^{M_2}(y;\sigma_X).$

Definition of Identifiability

• **Identifiability** means that the join probability distribution of the observable variables (without interventions) uniquely determines the post-interventional join probability distribution of the outcome variables:

$$P^{M_1}(v) = P^{M_2}(v)$$
 implies $P^{M_1}(y; \sigma_X) = P^{M_2}(y; \sigma_X).$

The Identifiability Problem

Given a sequential decision plan, determine whether it is identifiable.

Definition of Identifiability

• **Identifiability** means that the join probability distribution of the observable variables (without interventions) uniquely determines the post-interventional join probability distribution of the outcome variables:

$$P^{M_1}(v) = P^{M_2}(v)$$
 implies $P^{M_1}(y; \sigma_X) = P^{M_2}(y; \sigma_X).$

The Identifiability Problem

Given a sequential decision plan, determine whether it is identifiable.

• Identifiability means that $P(y; \sigma_X)$ is computable from the causal graph (which may contain unobservable variable) and the join distribution P(v) of the observable variables.

Jin Tian (ISU)

July 2008, UAI 2008 11 / 15

Known Solution:

Causal Effects

The identifiability problem has been completely solved for the case of sequential decision plans with all interventions being atomic, i.e., the case of *causal effects*. (Tian and Pearl, Shpitser and Pearl, Huang and Valtorta)

Known Solution:

Causal Effects

The identifiability problem has been completely solved for the case of sequential decision plans with all interventions being atomic, i.e., the case of *causal effects*. (Tian and Pearl, Shpitser and Pearl, Huang and Valtorta)

The General Case

The general case is reduced in this work to the identifiability of causal effects. Thus the identifiability of arbitrary sequential decision plans is resolved.

The Main Theorem

Key Assumption:

For a conditional intervention $\sigma_{X_i} = d_0(g(c))$ or a random intervention $\sigma_{X_i} = d_C$, it is required that $C \subseteq X \cup Z$, i.e., for every $X_i \in X$, $P(x_i | \text{pa}_{x_i}; \sigma_{X_i})$ will not depend on the unobservable variables.

The Main Theorem

Key Assumption:

For a conditional intervention $\sigma_{X_i} = d_0(g(c))$ or a random intervention $\sigma_{X_i} = d_C$, it is required that $C \subseteq X \cup Z$, i.e., for every $X_i \in X$, $P(x_i | \text{pa}_{x_i}; \sigma_{X_i})$ will not depend on the unobservable variables.

Theorem

Let $S = \langle G, \langle X, Y, Z \rangle \rangle$ be a sequential decision plan, $\sigma_X = \{\sigma_{X_i}\}$ an intervention strategy and denote by X_D, Z_D the subsets of X and Z, respectively, that are ancestors of Y in G_{σ_X} . If the causal effect $P_{x,z\setminus z_D}(y, z_D)$ is identifiable, then $P(y; \sigma_X)$ is identifiable using the formula

$$\mathsf{P}(y;\sigma_X) = \sum_{x_D, z_D} \prod_{i: X_i \in X_D} \mathsf{P}(x_i | ext{pa}_{x_i}; \sigma_{X_i}) \mathsf{P}_{x, z \setminus z_D}(y, z_D).$$

The Main Theorem

Key Assumption:

For a conditional intervention $\sigma_{X_i} = d_0(g(c))$ or a random intervention $\sigma_{X_i} = d_C$, it is required that $C \subseteq X \cup Z$, i.e., for every $X_i \in X$, $P(x_i | \text{pa}_{x_i}; \sigma_{X_i})$ will not depend on the unobservable variables.

Theorem

Let $S = \langle G, \langle X, Y, Z \rangle \rangle$ be a sequential decision plan, $\sigma_X = \{\sigma_{X_i}\}$ an intervention strategy and denote by X_D, Z_D the subsets of X and Z, respectively, that are ancestors of Y in G_{σ_X} . If the causal effect $P_{x,z\setminus z_D}(y, z_D)$ is identifiable, then $P(y; \sigma_X)$ is identifiable using the formula

$$P(y; \sigma_X) = \sum_{x_D, z_D} \prod_{i: X_i \in X_D} P(x_i | \operatorname{pa}_{x_i}; \sigma_{X_i}) P_{x, z \setminus z_D}(y, z_D).$$

How about the Converse?

Jin Tian (ISU)

July 2008, UAI 2008 13 / 15

The Identifiability Problem

The Main Theorem

Example (Dawid and Didelez)

Jin Tian (ISU)

July 2008, UAI 2008

The Identifiability Problem

The Main Theorem

Example (Dawid and Didelez)

• $P(y; \sigma_X) = \sum_{x_1, x_2, z} P(x_1; \sigma_{X_1}) P(x_2; \sigma_{X_2}) P_{x_1, x_2}(y, z).$

Jin Tian (ISU)

Example (Dawid and Didelez)

- $P(y; \sigma_X) = \sum_{x_1, x_2, z} P(x_1; \sigma_{X_1}) P(x_2; \sigma_{X_2}) P_{x_1, x_2}(y, z).$
- $P_{x_1,x_2}(y,z)$ may be shown to be identifiable

$$P_{x_1,x_2}(y,z) = P(y|x_1,x_2,z)P(z,x_1|x_2)$$

and, therefore $P(y; \sigma_X)$ is also identifiable.

- A method is presented for identifying dynamic sequential plans based on the identifiability of causal effects.
- Since algorithms for the identifiability of causal effects are available in the literature, this method is useful in practice.