A Polynomial-time Nash Equilibrium Algorithm for Repeated Stochastic Games

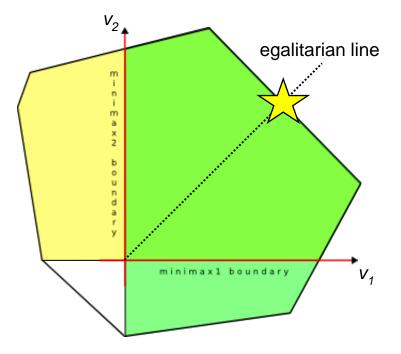
Enrique Munoz de Cote Michael L. Littman

Rutgers University

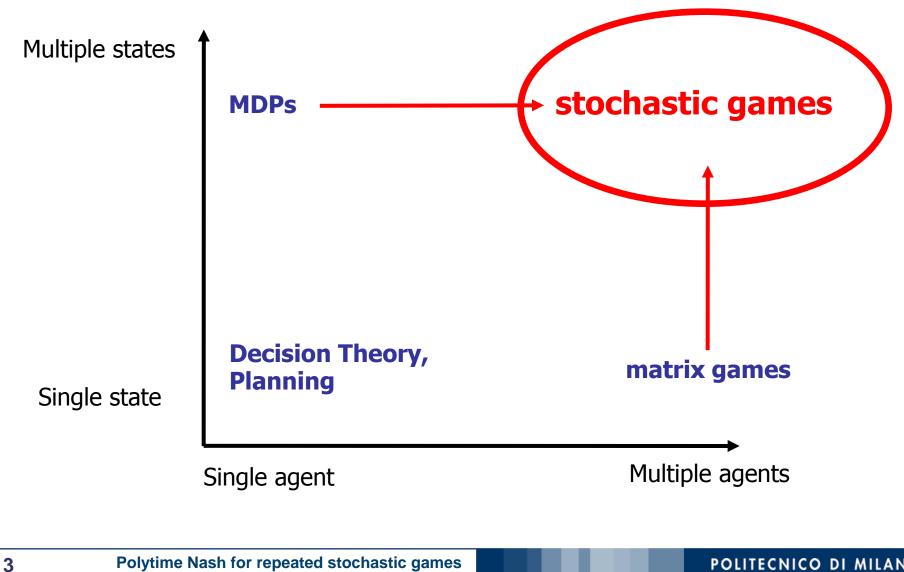
POLITECNICO DI MILANO

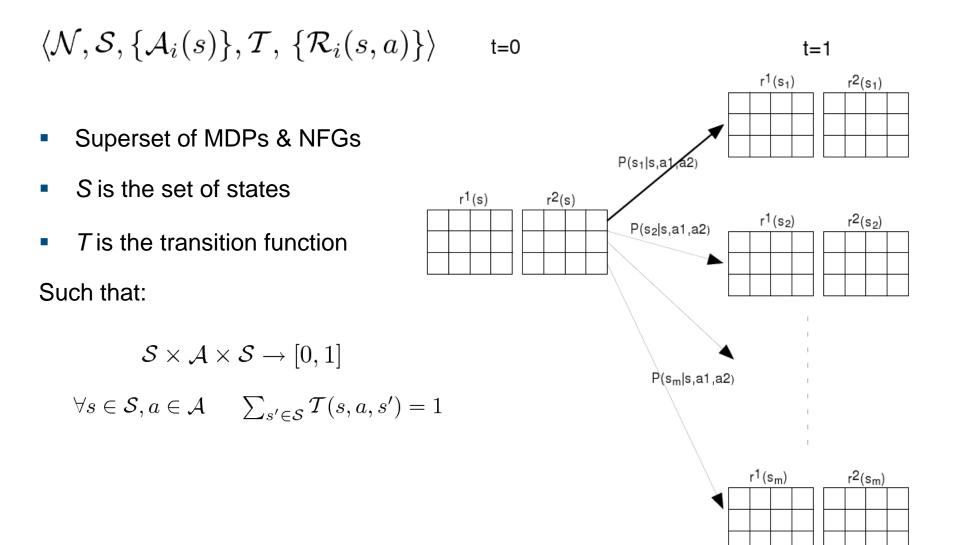
Concretely, we address the following computational problem:

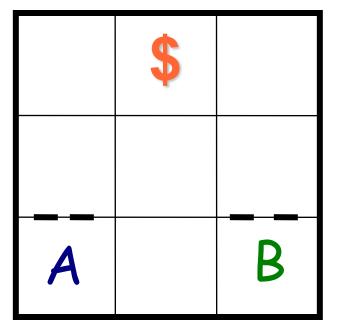
 Given a repeated stochastic game, return a strategy profile that is a Nash equilibrium (specifically one whose payoffs match the egalitarian point) of the average payoff repeated stochastic game in polynomial time.



Convex hull of the average payoffs







SG of chicken [Hu & Wellman, 03]

actions: U, D, R, L, X

backgrounds

- coin flip on collision
- Semiwalls (50%)
- collision = -5;
- step cost = -1;
- goal = +100;
- discount factor = 0.95;
- both can get goal.

Average total reward on equilibrium:

Nash

- (88.3,43.7) very imbalanced, inefficient
- (43.7,88.3) very imbalanced, inefficient
- (53.6,53.6) ¹/₂ mix, still inefficient

Correlated

• ([43.7,88.3],[43.7,88.3]);

Minimax

• (43.7,43.7);

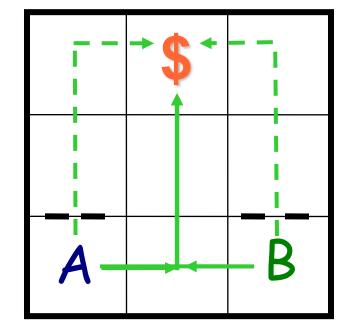
Friend

• (38.7,38.7)

Nash: computationally difficult to find in general

Polytime Nash for repeated stochastic games

POLITECNICO DI MILANO

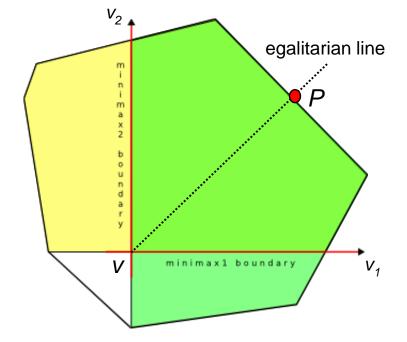


Folk theorems conceptual drawback: infinitely many feasible and enforceable strategies

Egalitarian line. line where payoffs are equally high above v

Egalitarian point. Maximizes the minimum advantage of the players' rewards

$$P = \arg\max_{x \in X} \min_{v}(x)$$



Convex hull of the average payoffs

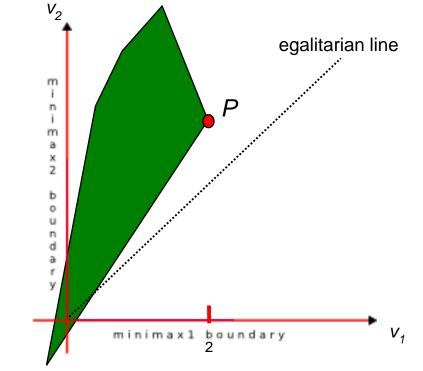
How? (the short story version)

- Compute attack and defense strategies.
 - Solve two linear programming problems.
- The algorithm searches for a point:

 $P = \arg \max_{x \in X} \min_{v}(x)$

where

$$\begin{array}{rcl}
x &=& (x_1, x_2) \\
\min_v(x) &=& \min(x_1 - v_1, x_2 - v_2)
\end{array}$$



Convex hull of a hypothetical SG

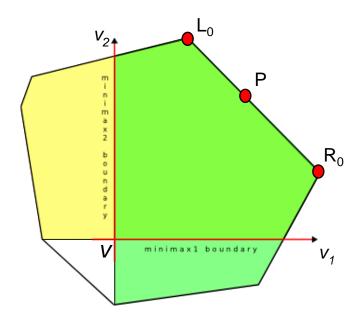
P is the point with the highest egalitarian value.

- Folk theorems can be interpreted computationally
 - Matrix form [Littman & Stone, 2005]
 - Stochastic game form [Munoz de Cote & Littman, 2008]
- Define a weighted combination value:

$$\sigma_w(p) = wp_1 + (1-w)p_2$$

 A strategy profile (π) that achieves σ_w(p^π) can be found by modeling an MDP

- We use MDPs to model 2 players as a *meta*-player
 - Return: joint strategy profile that maximizes a <u>weighted</u> combination of the players' payoffs
- Friend solutions:
 - $(R_0, \pi_1) = MDP(1),$
 - $(L_0, \pi_2) = MDP(0),$
- A weighted solution:
 - (P, π) = MDP(w)



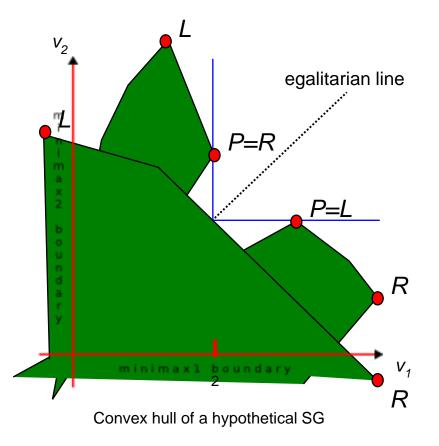
POLITECNICO DI MILANO

FolkEgal(U1,U2, €)

Compute

14

- attack₁, attack₂,
- defense₁, defense₂ and
- R=friend₁, L=friend₂
- Find egalitarian point and its strategy proflile
 - If R is left of egalitarian line: P=R
 - elself L is right of egalitarian line: P = L
 - Else egalSearch(R,L,T)

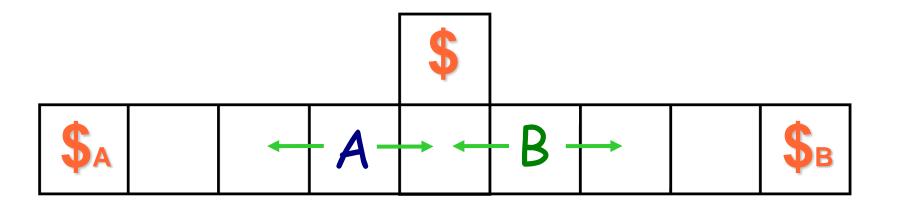


EgalSearch(L,R,T)

- Finds intersection between X and egalitarian line
- Close to a binary search
- Input:
 - Point L (to the left of egalitarian line)
 - Point R (to the right of egalitarian line)
 - A bound T on the number of iterations
- Return:
 - The egalitarian point P (with accuracy ϵ)
- Each iteration solves an MDP(w) by finding a solution to:

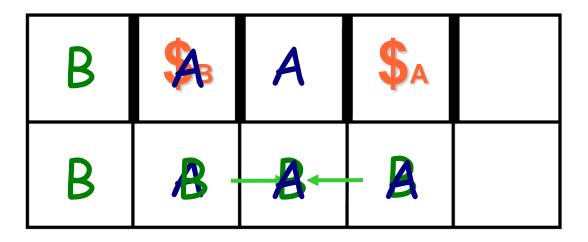
$$\sigma_w(L) = \sigma_w(R)$$

Algorithm	Agent A	Agent B	
security-VI	46.5	46.5	mutual defection
friend-VI	46	46	mutual defection
CE-VI	46.5	46.5	mutual defection
folkEgal	88.8	88.8	mutual cooperation with threat of defection



17

Algorithm	Agent A	Agent B	
security-VI	0	0	attacker blocking goal
friend-VI	-20	-20	mutual defection
CE-VI	68.2	70.1	suboptimal waiting strategy
folkEgal	78.7	78.7	mutual cooperation (<i>w=0.5</i>) with treat of defection



Algorithm	Agent A	Agent B	
security-VI	0	0	attacker blocking goal
friend-VI	-200	-200	mutual defection
CE-VI	32.1	32.1	suboptimal mutual cooperation
folkEgal	37.2	37.2	mutual cooperation with threat of defection

19

POLITECNICO DI MILANO

Rutgers University