Unsupervised Learning for Natural Language Processing

Dan Klein

Computer Science Division
University of California, Berkeley
(A (L) (P
Berkeley

Learning Language

Supervised NLP

Unsupervised NLP

Unsupervised NLP

- Goal: induce linguistic structure not in the data
- Problem Characteristics
- Complex linguistic phenomena
- Rich, interacting, combinatorial structures
- Lots of data
- Solution Characteristics
- Incremental / hierarchical learning
- Careful choice of what to model
- Careful choice of what not to model
- Unsupervised Grammar Refinement
- Unsupervised Coreference Resolution
- Unsupervised Translation Mining

Syntactic Analysis

Hurricane Emily howled toward Mexico 's Caribbean coast on Sunday packing 135 mph winds and torrential rain and causing panic in Cancun, where frightened tourists squeezed into musty shelters .

Treebank PCFGs

[Charniak 96]

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn't work well):

$\mathrm{ROOT} \rightarrow \mathrm{S}$	1
$\mathrm{~S} \rightarrow \mathrm{NP}$ VP.	1
$\mathrm{NP} \rightarrow \mathrm{PRP}$	1
$\mathrm{VP} \rightarrow \mathrm{VBD}$ ADJP	1

Conditional Independence?

- Not every NP expansion can fill every NP slot
- A grammar with symbols like "NP" won't be context-free
- Statistically, conditional independence too strong

Grammar Refinement

Berkeley

- Refining symbols improves statistical fit
- Parent annotation [Johnson 98]

Grammar Refinement

- Refining symbols improves statistical fit
- Parent annotation [Johnson 98]
- Head lexicalization [Collins 99, Charniak 00]

Grammar Refinement

- Refining symbols improves statistical fit
- Parent annotation [Johnson 98]
- Head lexicalization [Collins 99, Charniak 00]
- Automatic clustering [Petrov and Klein 06]

Parses and Derivations

Derivations

Parses (T) now have multiple derivations (t)

Training Objectives

[Matsuzaki et. al '05, Prescher '05]

- One option: maximum likelihood using EM
- Want derivation parameters which maximize parse likelihood

$$
\max _{\theta} \sum_{t \in T} P(t \mid \theta)
$$

- Other options possible:
- Variational inference [Liang et al. 07]
- Conditional likelihood [Petrov and Klein 08]

Learning Latent Grammars

EM algorithm:

- Brackets are known
- Base categories are known
- Only induce subsymbols

Just like Forward-Backward for HMMs.

Backward

Refinement of the DT tag

Refinement of the DT tag

Hierarchical Refinement

Berkeley

DT

the (0.50)
a (0.24)
The (0.08)

Grammar Ontogeny

Hierarchical Estimation Results

Refinement of the, tag

Berkeley

- Splitting all categories equally is wasteful:

Adaptive Splitting

- Want to split complex categories more
- Idea: split everything, roll back bad splits

Adaptive Splitting Results

Number of Phrasal Subcategories

Number of Phrasal Subcategories

Number of Phrasal Subcategories

Number of Lexical Subcategories

Number of Lexical Subcategories

Learned Lexical Clusters

Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco	Street

Personal pronouns (PRP):

PRP-0	It	He	I
PRP-1	it	he	they
PRP-2	it	them	him

Learned Lexical Clusters

Relative adverbs (RBR):

RBR-0	further	lower	higher
RBR-1	more	less	More
RBR-2	earlier	Earlier	later

Cardinal Numbers (CD):

CD-7	one	two	Three
CD-4	1989	1990	1988
CD-11	million	billion	trillion
CD-0	1	50	100
CD-3	1	30	31
CD-9	78	58	34

Incremental Learning

[Charniak 98, Charniak and Johnson 05, Petrov and Klein 07] Coarse-to-Fine Pruning

Consider the span 5 to 12:

split in eight: \square

[Petrov and Klein 07]

Projected Grammars

Final Results (Accuracy)

		$\begin{gathered} \leq 40 \text { words } \\ \text { F1 } \end{gathered}$	$\begin{aligned} & \text { all } \\ & \text { F1 } \end{aligned}$
$\underset{\Omega}{\mathrm{Z}}$	Charniak\&Johnson '05 (generative)	90.1	89.6
	Split / Merge	90.6	90.1
$\begin{aligned} & \text { 另 } \\ & \hline \end{aligned}$	Dubey '05	76.3	-
	Split / Merge	80.8	80.1

	Chiang et al. ‘02	80.0	76.6
	Split / Merge	86.3	83.4

Nonparametric PCFGs

[Liang, Petrov, Jordan, \& Klein ‘07]

[Petrov, Pauls, \& Klein ‘07]

Unstructured Phone Models

Standard Model

Automatic Splits

HMM Baseline	25.1%
5 Split rounds	21.4%

Summary

- Latent-variable grammar refinement
- Automatically learns good grammar splits
- Gives state-of-the-art parsing accuracy
- Admits very efficient parsing algorithms
- More applications beyond parsing!

Outline

- Unsupervised Grammar Refinement
- Unsupervised Coreference Resolution
- Unsupervised Translation Mining
[Haghighi and Klein 07]

Unsupervised Coreference

Weir Group whose headquarters U.S
 corporation
 power plant,which
 Jiangsu

[Li et al 04, Haghighi and Klein 07]

Generative Mention Models

Weir Group Weir Group
... "Weir group". "whose" ... "headquarters"

Weir Plant Weir Plant Jiangsu

- "power plant" \cdot "which" \cdot...... "Jiangsu"

Generative Mention Models

Weir Group Weir Group
1 1

United ctatar Whir Group Inference Time "U.S Corporation"

 -•- - - - - - -Weir Plant Weir Plant Jiangsu
. "power plant" \cdot "which" \cdot...... "Jiangsu"

Finite Mixture Model

Entity Distribution

$$
\begin{aligned}
& \mathrm{P}(\text { Weir Group })=0.2, \\
& \mathrm{P}(\text { Weir } H Q)=0.5,
\end{aligned}
$$

.....

Mention Parameters
P(W | Weir Group): "Weir Group" $=0.4$, "whose" $=0.2$,

Finite Mixture Model

Entity Distribution

Mention Parameters
P(W | Weir Group): "Weir Group" $=0.4$, "whose" $=0.2$,

Finite Mixture Model

Entity Distribution

Infinite Mixture Model

Entity Distribution

Infinite Mixture Model

100
90
$M^{M U C} F_{1} \quad 80$
70
60
50
54.5

Mixture
The Weir Group , whose headquarters is in the U.S is a large specialized corporation. This power plant, which, will be situated in Jiangsu, has a large generation capacity.

Enriching the Mention Model

Mention Model

P(W | Weir Group):
"Weir Group" $=0.4$,
"whose"=0.2,

Enriching the Mention Model

Pronoun
Non-Pronoun

Enriching the Mention Model

Entity Parameters

Pronoun

Pronoun Parameters

W|PL, NEUT, ORG
"they": 0.3, "it": $0.2, \ldots$

Enriching the Mention Model

Pronoun
Non-Pronoun

Enriching Mention Model

Berkeley

Non-pronoun
Pronoun

Enriching Mention Model

Berkeley

Enriching Mention Model

Berkeley

Pronoun Model

100
90
MUC F ${ }_{1} \quad 80$

70		64.1	
60	54.5	\square	
	Mixture	Pronoun	

The Weir Group, whose headquarters is in the U.S is a large specialized corporation. This power plant, which, will be situated in Jiangsu, has a large generation capacity.

Salience Model

Salience Model

Entity	Activation
1	0.0
2	0.0

Entity	Activation
1	1.0
2	0.0

Entity	Activation
1	0.5
2	1.0

Salience Model

Berkeley

Salience Model

Salience Model

Berkeley

100
90
MUC F ${ }_{1} \quad 80$

80			71.5
70		61.5	\square
60	54.5		
Mixture	Pronoun	Salience	

The Weir Group, whose headquarters is in the U.S is a large specialized corporation. This power plant, which, will be situated in Jiangsu, has a large generation capacity.

Global Coreference Resolution

Berkeley

Global Entity Model

Berkeley

Global Entity Model

ψ

Global Entity Model

HDP Model

100
90

MUC F ${ }_{1} \quad 80$ | 80 | | | 71.5 | 72.5 |
| :--- | :--- | :---: | :---: | :---: |
| 70 | | 64.1 | | |
| 60 | 54.5 | | | |
| 50 | | | | |
| | Mixture | Pronoun | Salience | HDP |

The Weir Group , whose headquarters is in the U.S is a large specialized corporation. This power plant, which, will be situated in Jiangsu, has a large generation capacity.

Global Entity Resolution

Experiments

- MUC6 English NWIRE (all mentions)
- 53.6 F1* [Cardie and Wagstaff 99] Unsupervised
- 70.3 F1 [Unsup Entity-Mention] Unsupervised
- 73.4 F1 [McCallum \& Wellner 04] Supervised
- 81.3 F1 [Luo et al 04]

Supervised++

* MUC score

Summary

- Fully generative unsupervised coref model
- Basic model of pronoun structure
- Sequential model of local attentional state
- HDP global coreference model ties documents
- Competitive with supervised results
- Many features not exploited
- Still lots of room to improve!
- Unsupervised Grammar Refinement
- Unsupervised Coreference Resolution
- Unsupervised Translation Mining

Standard MT Approach

Target Text

- Trained using parallel sentences
- May not always be available

MT from Monotext

Target Text

- Translation without parallel text?
[Fung 95, Koehn and Knight 02, Haghighi and Klein 08]

Task: Lexicon Induction

Source Words

Data Representation

Botrobe

Orthographic Features

\#st	1.0
tat	1.0
te\#	1.0

Context Features

world	20.0
politics	5.0
society	10.0

Data Representation

Berkeley

Orthographic Features
state

\#st	1.0
tat	1.0
te\#	1.0

Context Features

world	20.0
politics	5.0
society	10.0

Orthographic Features

\#es	1.0
sta	1.0
do\#	1.0

Context Features

mundo	17.0
politica	10.0
sociedad	6.0

Canonical Correlation Analysis

Canonical Correlation Analysis

Berkeley

- 2 - 1 - $3-$

Canonical Correlation Analysis

Berkeley

$-(1)-2-$

Canonical Correlation Analysis

Canonical Space

Canonical Correlation Analysis

Canonical Space

Generative Model

Source Words

Generative Model

Berkeley

Generative Model

Source Words

Target Words

Learning: EM?

E-Step: Obtain posterior over matching

$$
P(\mathbf{m} \mid \mathbf{s}, \mathbf{t})
$$

M-Step: Maximize CCA Parameters
$\max _{\left(W_{s}, W_{t}\right)} \mathbb{E}_{P(\mathbf{m} \mid \mathbf{s}, \mathbf{t})}\left[\sum_{(i, j) \in \mathbf{m}} \log p\left(s_{i}, t_{j} \mid \mathbf{m} ; W_{s}, W_{t}\right)\right]$

Inference: Hard EM

Hard E-Step: Find best matching

$$
\begin{aligned}
w_{i j}= & \log p\left(s_{i}, t_{j} \mid \mathbf{m} ; W_{s}, W_{t}\right)-\log \mathrm{NULL}_{S}\left(s_{i}\right) \\
& -\log \mathrm{NULL}_{T}\left(t_{j}\right)
\end{aligned}
$$

M-Step: Solve CCA

Experimental Setup

- Data: 2K most frequent nouns, texts from Wikipedia
- Seed: 100 translation pairs
- Evaluation: Precision and Recall against lexicon obtained from Wiktionary
- Report $p_{0.33}$, precision at recall 0.33

Feature Experiments

- Baseline: Edit Distance

■ Edit Dist
4k EN-ES Wikipedia Articles

Feature Experiments

- MCCA: Only orthographic features

4k EN-ES Wikipedia Articles

Feature Experiments

- MCCA: Only context features

4k EN-ES Wikipedia Articles

Feature Experiments

- MCCA: Orthographic and context features

Feature Experiments

Feature Experiments

Seed Lexicon Source

- Automatic Seed
- Edit distance seed [Koehn \& Knight 02]

Analysis

English-Spanish

Source	Target	Correct
education	educación	Y
pacto	pact	Y
stability	estabilidad	Y
corruption	corrupción	Y
tourism	turismo	Y
organisation	organización	Y
convenience	conveniencia	Y
syria	siria	Y
cooperation	cooperación	Y
culture	cultura	Y
protocol	protocolo	Y
north	norte	Y
health	salud	Y
action	reacción	N

Top Non-Cognates

health	salud
traceability	rastreabilidad
youth	juventud
report	informe
advantages	ventajas

Interesting Mistakes

liberal	partido
Kirkhope	Gorsel
action	reacción
Albanians	Bosnia
a.m.	horas
Netherlands	Bretaña

Language Variation

English-French

Source	Target	Correct
xenophobia	xénophobie	Y
corruption	corruption	Y
subsidiarity	subsidiarité	Y
programme	programme-cadre	N
traceability	traçabilité	Y

Language Variation

English－Chinese

Source	Target	Correct
prices	价格	Y
network	网络	Y
population	人口	Y
reporter	孙	N
oil	石油	Y

Analysis

Orthography Features

Source Feature	Closest Target Features	Example Translations
\#st	\#es, est	(statue,estatua)
ty\#	ad\#, d\#	(felicity,felicidad)
ogy	gía, gí	(geology,geología)

Context Features

Source Feature	Closest Context Features
party	partido, izquierda
democrat	socialistas, demócratas
beijing	pekín, kioto

Summary

- Learned bilingual lexicon from monotext
- Matching + CCA model
- Possible even from unaligned corpora
- Possible for non-related languages
- High-precision, but much left to do!

Conclusion

- Three cases of unsupervised learning of nontrivial linguistic structure for NLP problems
- Incremental structure learning
- Careful control of structured training
- Targeted modeling choices
- In some cases, unsupervised systems are competitive with supervised systems (or better!)
- Much more left to do!

Thank you!

nlp.cs.berkeley.edu

Outline

- Latent-Variable Grammar Learning
- Unsupervised Coreference Resolution
- Unsupervised Translation Mining
- Other Unsupervised Work

Agreement-Based Learning

Problem: learning complex hidden-variable models
Traditional solution: approximate EM

$$
\Rightarrow M \stackrel{\circ}{M} \quad \cdots \cdots \cdots
$$

one intractable model
Our solution: product EM (train submodels to agree)

Applications: unsupervised NLP, phylogenetic HMMs

Weakly Supervised Learning

Newly remodeled 2 Bdrms/1 Bath, spacious upper unit, located in Hilltop Mall area. Walking distance to shopping, public transportation, schools and park. Paid water and garbage. No dogs allowed.

Prototype Lists

FEATURE	kitchen, laundry
LOCATION	near, close
TERMS	paid, utilities
SIZE	large, feet
RESTRICT	cat, smoking

NN	president	IN	of
VBD	said	NNS	shares
CC	and	TO	to
NNP	Mr.	PUNC	.
JJ	new	CD	million
DET	the	VBP	are

Information Extraction
English POS

Language Evolution

Berkeley

Gloss	Latin	Italian	Spanish	Portuguese
Word/verb	verbum	verbo	verbo	verbu
Fruit	fructus	frutta	fruta	fruta
Laugh	ridere	ridere	reir	rir
Center	centrum	centro	centro	centro
August	augustus	agosto	agosto	agosto
Swim	natare	nuotare	nadar	nadar

