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| Unsupervised NLP
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= Goal: induce linguistic structure not in the data

= Problem Characteristics

= Complex linguistic phenomena
= Rich, interacting, combinatorial structures

= Lots of data

= Solution Characteristics
= Incremental / hierarchical learning
= Careful choice of what to model
= Careful choice of what not to model



Outline

= Unsupervised Grammar Refinement
= Unsupervised Coreference Resolution

= Unsupervised Translation Mining
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Syntactic Analysis
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Hurricane Emily howled toward Mexico 's Caribbean coast on Sunday
packing 135 mph winds and torrential rain and causing panic in
Cancun, where frightened tourists squeezed into musty shelters .
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Treebank PCFGs

= Use PCFGs for broad coverage parsing
= (Can take a grammar right off the trees (doesn’t work well):

NP

PRP VBD ADJP .

He

ROOT

_— T

N

was

]

right

—)

ROOT — S 1
S — NP VP 1
NP —> PRP 1

VP - VBD ADJP 1

[Charniak 96]

Model

F1

Baseline
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Conditional Independence?

Berkeley
S
NP VP
| _
PRP VBD NP
| | T

She heard DT NN
| |

the noise

= Not every NP expansion can fill every NP slot
= A grammar with symbols like “NP” won’t be context-free
= Statistically, conditional independence too strong
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| Grammar Refinement
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S
NP”S VP
| _
PRP VBD NP VP

She heard DT NN
| |
the noise

» Refining symbols improves statistical fit
= Parent annotation [Johnson 98]
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Grammar Refinement

S
NP-she VP
| —
PRP VBD NP-noise

She heard DT NN
| |
the noise

» Refining symbols improves statistical fit
= Parent annotation [Johnson 98]
= Head lexicalization [Collins 99, Charniak 00]
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Grammar Refinement

S
NP-1 VP
| —
PRP VBD NP-2

She heard DT NN
| |
the noise

» Refining symbols improves statistical fit
= Parent annotation [Johnson 98]

= Head lexicalization [Collins 99, Charniak 00]
= Automatic clustering [Petrov and Klein 06]
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Parses and Derivations

Derivations
Parses 5-1
NP-1 VP-2 -1
S | —— |
- N PRP-1 VBD-2 ADJP-1 .
NP VP : | | —
He was right
| — T
PRP VBD ADJP 52
| I — e~
He was right NP-2 VP-1 -1
| —— |
PRP-1 VBD-1 ADJP-2 .
[ I —_
He was right

Parses (T) now have multiple derivations (t)



gnivfersw .. . . [Matsuzaki et. al *05,
Tralnlng ObjeCtIVES Prescher '05]

Berkeley

= One option: maximum likelihood using EM
= \Want derivation parameters which maximize
parse likelihood

IMmaxg ZtET P(ﬂ@)

= QOther options possible:
= Variational inference [Liang et al. 07]
= Conditional likelihood [Petrov and Klein 08]



Learning Latent Grammars

EM algorithm: Forward

= Brackets are known / \

» Base categories are known
= Only induce subsymbols

S[X1]
B
NP[X>] VP[X4] [X7]
| _ |
PRP[X3] VBD[X5] ADJP[ X;]
| | —
He was right

=)

Just like Forward-Backward
for HMMs. Backward



Refinement of the DT tag

DT

the (0.50)
a (0.24)
The (0.08)

a (0.61) the (0.80) this (0.39) some (0.20)
the (0.19) The (0.15) that (0.28) all (0.19)
an (0.11) a (0.01) That (0.11) those (0.12)
DT-1 DT-2 DT-3 DT-4




Refinement of the DT tag

DT

the (0.50)
a (0.24)
The (0.08)

? ? ? ? ? ? ? ?
DT-1 DT-2 DT-3 DT-4 DT-5 DT-6 DT-7 DT-8



Hierarchical Refinement

DT

the (0.50)
a (0.24)
The (0.08)
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sy _Hlerarchical Estimation Results
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Refinement of the , tag

= Splitting all categories equally is wasteful:

, (1.00)

, (1.00) , (1.00)

, (1.00) , (1.00) , (1.00) , (1.00)




Adaptive Splitting

= Want to split complex categories more

ldea: split everything, roll back bad splits

the (0.54) Likelihood with split reversed
R (23) Likelihood with split
The (0.09)
e
a (0.61) the (0.80)
the (0.19) The (0.15)
an (0.11) a(0.01)
D
the (0.96) | [ The (0.93)
a (0.01) A (0.02)
The (0.01) | | No (0.01)
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ing accura

Adaptive Splitting Results
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Number of Lexical Subcategories
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| earned Lexical Clusters

Proper Nouns (NNP):

NNP-14 Oct. Nov. Sept.
NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters
NNP-15 New San Wall
NNP-3 York Francisco Street
Personal pronouns (PRP):
PRP-0 It He I
PRP-1 It he they
PRP-2 It them him
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Berkeley

Relative adverbs (RBR):
RBR-0 further lower higher
RBR-1 more less More
RBR-2 earlier Earlier later

Cardinal Numbers (CD):
CD-7 one two Three
CD-4 1989 1990 1988
CD-11 million billion trillion
CD-0 1 50 100
CD-3 1 30 31
CD-9 /8 58 34
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[Charniak 98, Charniak and Johnson 05, Petrov and Klein 07]

Coarse-to-Fine Pruning
Berkeley

Consider the span 5 to 12:

coarse.

split in eight: ...
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Projected Grammars
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< 40 words all
F1 F1
m | Charniak&Johnson ‘05 (generative) 90.1 89.6
Z
G Split / Merge 90.6 90.1
gn) Dubey ‘05 76.3 -
A Split / Merge 80.8 80.1
9 Chiang et al. ‘02 80.0 /6.6
£ Split / Merge 86.3 83.4
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| Nonparametric PCFGs

[Liang, Petrov, Jordan, & Klein ‘07]

left child
100.0
90 —— HDP-PCFG
—— Standard PCFG
84.0
Fl - |
6.0 1
68.0

5 9 12 16 20
maximum number of subsymbols (truncation A)



University of A8

vers [Petrov, Pauls, & Klein ‘07]
Unstructured Phone Models
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Summary
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= [atent-variable grammar refinement
= Automatically learns good grammar splits
= Glves state-of-the-art parsing accuracy
= Admits very efficient parsing algorithms

= More applications beyond parsing!



Outline

= Unsupervised Grammar Refinement
= Unsupervised Coreference Resolution

= Unsupervised Translation Mining
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[Haghighi and Klein 07]

Unsupervised Coreference

Berkeley

Welir Group

U.S
corporation

whose

headquarters

power plant| ,which

Jiangsu




........... [Li et al 04, Haghighi and Klein 07]

|||||||

Generative Mention Models

Berkeley

Weir Group Welir Group

1 1 1
.. "Weir group”|- "whose” |... “headquarters’

Unitedlstates WeirlGroup

.............. ‘U.S"|.......... | “corporation” | ....-.....

Weir Plant  Weir Plant Jiangsu
l l 1

- Fpower plant” |- | “which” |-+ “Jiangsu”| -+
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Generative Mention Models

Berkeley

Weir Group Welir Group

1 1 1
.. "Weir group”|- "whose” |... “headquarters’

United \Alalc 05roup
Il Inference Time
.............. “U.S 1o [ corporation” | .eeee.....
Weir Plant  Weir Plant Jiangsu
l l 1

- Fpower plant” |- | “which” |-+ “Jiangsu”| -+
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Entity Distribution

P(Weir Group) = 0.2,

P(Weir HQ) = 0.5, Mention Parameters

P(W | Weir Group):
“Weir Group™=0.4,

“‘whose’=0.2,




University of
California

Finite Mixture Model

Berkeley

Entity Distribution

Mention Parameters
P(W | Weir Group):
“Weir Group™=0.4,

“whose’=0.2,
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Finite Mixture Model

Berkeley

Entity Distribution

Mention Parameters
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Infinite Mixture Model

Berkeley

Entity Distribution

Mention Parameters




Infinite Mixture Model

100
90

MUC F1 80
70
60 54.5
50 I

Mixture

The Weir Group ,,whose| headquarters is in
the U.S Is a large specialized corporation.
This power plant ,jwhich|, will be situated In
Jiangsu, has a large generation capacity.




Enriching the Mention Model

Berkeley

Mention Model

P(W | Weir Group):
“Weir Group”=0.4,
“whose’=0.2,




&1 Enriching the Mention Model

Pronoun Non-Pronoun
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Enriching the Mention Model

Berkeley

Entity Parameters

Pronoun

Pronoun Parameters

.G, MALE. PERS

.9

W | PL, NEUT, ORG

“they™.0.3, “it™: 0.2,...




' Enriching the Mention Model

Pronoun Non-Pronoun

o»(g}e
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Enriching Mention Model

Berkeley

Mention Type
Proper,
Pronoun,
Nominal

B Non-pronoun
B Pronoun
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Enriching Mention Model
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Enriching Mention Model
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Pronoun Model

100
90

MUC F1 80
70 64.1
60 54.5 .
50 I

Mixture Pronoun

The Weir Group , whose headquarters is In
the U.S Is a large specialized corporation.
This power plant ,jwhich , will be situated In
Jiangsu, has a large generation capacity.
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Entity | Activation

> | 1 | 10

2 0.0

Salience Values

> TOP, HIGH, MED,
LOW, NONE

Mention Type

Proper, Pronoun,
Nominal
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Salience Model

Entity |Activation

1 0.5

Berkeley
Entity |Activation
1 0.0
2 0.0

Entity |Activation
1 1.0
2 0.0

2 1.0

Yo 1.0

6 NONE
@ PROPER

e NONE
@ PROPER
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Salience Model

B Pronoun| || Nominal

B Proper

NONE

LOW

MID

HIGH

TOP

25%
50%
75%
100%
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Salience Model

Berkeley
100
90
M -
UCF 80 715
0 61.5
60 545
Mixture Pronoun Salience
The Weir Group , whose IS IN

the U.S Is a large specialized corporation.
This power plant , which , will be situated In
Jiangsu, has a large generation capacity.



Global Coreference Resolution

Global Entities

TN 1
L
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HDP Model

Berkeley
100
90
MUC F1 80 71 5 79 5
/70 64.1
60 545 I
50 —
Mixture Pronoun Salience HDP

The Weir Group , whose headquarters is In

the U.S Is a large specialized
This power plant , which , will be S|tuated IN

Jiangsu, has a large generation capacity.
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Experiments

= MUCG6 English NWIRE (all mentions)

53.6 F1* [Cardie and Wagstaff 99] Unsupervised
70.3 F1 [Unsup Entity-Mention]  Unsupervised
/3.4 F1 [McCallum & Wellner 04] Supervised

81.3 F1 [Luo et al 04] Supervised++

* MUC score
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Summary

Berkeley

= Fully generative unsupervised coref model

= Basic model of pronoun structure
= Sequential model of local attentional state
= HDP global coreference model ties documents

= Competitive with supervised results

= Many features not exploited
= Still lots of room to improve!



Outline

= Unsupervised Grammar Refinement
= Unsupervised Coreference Resolution

= Unsupervised Translation Mining



Source

Jext_

= Trained using parallel sentences

Standard MT Approach

=

= May not always be available

Target

Jext_



MT from Monotext

=

Target
ext

il
L)
dil

= Translation without parallel text?

[Fung 95, Koehn and Knight 02, Haghighi and Klein 08]
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Task: Lexicon Induction
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Source Words

Source

Jext_

S

Target Words

Matching
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Data Representation
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Orthographic Features

f#st 1.0
{at 1.0

e 1.0
< > Context Features
Source world 20.0
politics | 5.0
\TeXt/ society | 10.0
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5

Source
ext_

Orthographic Features

#st 1.0
tat 1.0
te# 1.0
Context Features
world 20.0
politics 5.0
society | 10.0

Data Representation

5

Target
ext_

Orthographic Features

#es 1.0
sta 1.0
do# 1.0

Context Features

mundo 17.0
politica | 10.0
sociedad 6.0




Canonical Correlation Analysis

Berkeley

Source Space Target Space



Canonical Correlation Analysis

Berkeley

Source Space Target Space



Canonical Correlation Analysis

Berkeley

DRE- D

Source Space Target Space



[Bach and Jordan 06]
Canonical Correlation Analysis

Berkeley

Canonical Space

Source Space Target Space



[Bach and Jordan 06]
Canonical Correlation Analysis

Berkeley
Canonical Space

Source Space Target Space



Generative Model

Source Words Target Words
S Matching t
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Generative Model
Canonical Space

Berkeley
< N N(07 Id)
Rd

W,z + noise ‘ W,z + noise

Source Space Target Space
Rds Rdt
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Generative Model
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Source Words Target Words
S Matching t
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Learning: EM?

E-Step: Obtain posterior over matching

O---O

P(m]s, t) O~<.-O

~

O~ O

M-Step: Maximize CCA Parameters

111 aX
(WS 7Wt )

LP(mls,t)

Z lng(SZ, t]|m7 WS) Wt)

 (4,7)€m
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Inference: Hard EM

Berkeley

Hard E-Step: Find best matching

Wi; = logp(si,tj\m; W&Wt)—logNULLS(Si)
—log NULLp(¢,)

M-Step: Solve CCA

(ng,aﬂ};t) Z 1ng(8’i7 tj ‘ma WS) Wt)

| (¢,7)€Em



Experimental Setup

= Data: 2K most frequent nouns, texts from
Wikipedia

= Seed: 100 translation pairs

= Evaluation: Precision and Recall against
lexicon obtained from Wiktionary

= Report p, 33, precision at recall 0.33



Feature Experiments

= Baseline: Edit Distance

100
75

30

Precision

25

m Edit Dist
4k EN-ES Wikipedia Articles



Feature Experiments

= MCCA: Only orthographic features

100

75

o0

Precision

25

0

m Edit Dist w Ortho
4k EN-ES Wikipedia Articles



Feature Experiments

= MCCA: Only context features

100
75

o0

Precision

25

M Edit Dist ®Ortho w Context
4k EN-ES Wikipedia Articles



Feature Experiments

= MCCA: Orthographic and context features

100

73

50

Precision

25

m Edit Dist ®mOrtho m Context w MCCA
4k EN-ES Wikipedia Articles



Feature Experiments

]

Edit Dist

0.8
g 06 |
I
72
H
3 o
-

0.2 |-

0
o 0.2 0.4 0.6 0.8

Recall



Feature Experiments

]

Edit Dist
0.8 | \ MCCA
g 06 |
H
(7))
H
3 ..
. -
0.2 |
o
0 0.2 0.4 0.6 0.8

Recall



Seed Lexicon Source

= Automatic Seed
= Edit distance seed [Koehn & Knight 02]

100

75

50

25

Precision

0

m Auto Seed m Gold Seed
4k EN-ES Wikipedia Articles
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Analysis

. English-Spanish

Source Target Correct
education educacion Y
pacto pact Y
stability estabilidad Y
corruption corrupcion Y
tourism turismo Y
organisation organizacion Y
convenience conveniencia Y
syria siria Y
cooperation  cooperacion Y
culture cultura Y
protocol protocolo Y
north norte Y
health salud Y
action reaccion N
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Analysis

Berkeley

Top Non-Cognates

health salud
traceability rastreabilidad

youth juventud

report informe
advantages ventajas
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Analysis

Berkeley

Interesting Mistakes

liberal partido
Kirkhope Gorsel
action reaccion
Albanians Bosnia
a.m. horas
Netherlands Bretana
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| Language Variation

Berkeley

English-French

Source Target Correct
xenophobia xénophobie Y
corruption corruption Y
subsidiarity subsidiarité Y
programme programme-cadre N
traceability tracabilité Y




' Language Variation

English-Chinese
Source Target Correct
prices RS Y
network BE= Y
population Y
reporter 1)1 N
oil Paklis Y
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Analysis

Orthography Features

Source Feature

Closest Target Features

Example Translations

#st #es, est (statue,estatua)
ty# ad#, d# (felicity,felicidad)
0gy o1a, gi (geology,geologia)

Context Features

Source Feature

Closest Context Features

party

partido, izquierda

democrat

socialistas, democratas

beijing

pekin, kioto
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Summary

Berkeley

= [earned bilingual lexicon from monotext
= Matching + CCA model
= Possible even from unaligned corpora
= Possible for non-related languages
= High-precision, but much left to do!



Conclusion

= Three cases of unsupervised learning of non-
trivial linguistic structure for NLP problems
* |ncremental structure learning
= Careful control of structured training
= Targeted modeling choices

"= |n some cases, unsupervised systems are
competitive with supervised systems (or better!)

= Much more left to do!



Thank you!
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Outline

= [ atent-Variable Grammar Learning
= Unsupervised Coreference Resolution
= Unsupervised Translation Mining

= Other Unsupervised Work



University of
California J/

Agreement-Based Learning

Problem: learning complex hidden-variable models

Traditional solution: approximate EM

il el
{.\;j \

N 0 0

/ N

one intractable model

=

M

—b,.—#,M

Our solution: product EM (train submodels to agree)

HER R

two tractable submodels

M

Q‘

b

+

y

M

o

N

Applications: unsupervised NLP, phylogenetic HMMs

the railroad term is “  demand loading
le || terme || ferroviaire chargement || sur | | demande
le  terme ferroviaire est " chargement sur demande
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Newly remodeled 2 Bdrms/1 Bath, spacious upper unit, located in
Hilltop Mall area. Walking distance to shopping, public transportation,
schools and park. Paid water and garbage. No dogs allowed.

Prototype Lists

FEATURE | kitchen, laundry NN _|president | IN of
said NNS shares
near, close
TERMS paid, utilities and TO to
SIZE large, feet NNP | Mr. PUNC -
RESTRICT | cat, smoking JJ | new CD milfion
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Gloss Latin Italian  Spanish Portuguese
Word/verb | verbum  verbo  verbo verbu 1a
Fruit fructus frutta fruta fruta
Laugh ridere ridere reir rir ()
Center centrum centro  centro  centro .
August augustus agosto agosto  agosto -/ é\-
Swim natare nuotare nadar nadar
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