Unsupervised Learning for Natural Language Processing

Dan Klein Computer Science Division University of California, Berkeley

Learning Language

Supervised NLP

Unsupervised NLP

University of California C - A - L N L P Berkelev

- Goal: induce linguistic structure not in the data
- Problem Characteristics
 - Complex linguistic phenomena
 - Rich, interacting, combinatorial structures
 - Lots of data
- Solution Characteristics
 - Incremental / hierarchical learning
 - Careful choice of what to model
 - Careful choice of what not to model

Unsupervised Grammar Refinement

Unsupervised Coreference Resolution

Unsupervised Translation Mining

University of California Syntactic Analysis Berkele

C

Hurricane Emily howled toward Mexico 's Caribbean coast on Sunday packing 135 mph winds and torrential rain and causing panic in Cancun, where frightened tourists squeezed into musty shelters .

[Charniak 96]

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn't work well):

Model	F1
Baseline	72.0

University of California C - C - C - C N L P Berkelev

- Not every NP expansion can fill every NP slot
 - A grammar with symbols like "NP" won't be context-free
 - Statistically, conditional independence too strong

- Refining symbols improves statistical fit
 - Parent annotation [Johnson 98]

- Refining symbols improves statistical fit
 - Parent annotation [Johnson 98]
 - Head lexicalization [Collins 99, Charniak 00]

- Refining symbols improves statistical fit
 - Parent annotation [Johnson 98]
 - Head lexicalization [Collins 99, Charniak 00]
 - Automatic clustering [Petrov and Klein 06]

University of California N L P Berkeley

Parses (T) now have multiple derivations (t)

[Matsuzaki et. al '05, Prescher '05]

- One option: maximum likelihood using EM
- Want derivation parameters which maximize parse likelihood

$$\max_{\theta} \sum_{t \in T} P(t|\theta)$$

- Other options possible:
 - Variational inference [Liang et al. 07]
 - Conditional likelihood [Petrov and Klein 08]

Learning Latent Grammars

EM algorithm:

University of California

Berkeley

- Brackets are known
- Base categories are known
- Only induce subsymbols

Just like Forward-Backward for HMMs.

Hierarchical Refinement

DT the (0.50) a (0.24) The (0.08)

Splitting all categories equally is wasteful:

Adaptive Splitting

University of California

Berkeley

C

- Want to split complex categories more
- Idea: split everything, roll back bad splits

Parsing accuracy (F1)

Number of Phrasal Subcategories

Number of Phrasal Subcategories

University of California N L P Berkeley

Number of Lexical Subcategories

Learned Lexical Clusters

Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.	
NNP-12	John	Robert	James	
NNP-2	J.	E.	L.	
NNP-1	Bush	Noriega	Peters	
NNP-15	New	San	Wall	
NNP-3	York	Francisco	Street	

Personal pronouns (PRP):

PRP-0	lt	He	
PRP-1	it	he	they
PRP-2	it	them	him

Learned Lexical Clusters

Relative adverbs (RBR):

RBR-0	further	lower	higher
RBR-1	more	less	More
RBR-2	earlier	Earlier	later

Cardinal Numbers (CD):

CD-7	one	two	Three			
CD-4	1989	1990	1988			
CD-11	million	billion	trillion			
CD-0	1	50	100			
CD-3	1	30	31			
CD-9	78	58	34			

Incremental Learning

[Charniak 98, Charniak and Johnson 05, Petrov and Klein 07]

Coarse-to-Fine Pruning

Consider the span 5 to 12:

split in eight:		 												
opine in orgine	_ · · ·	 		•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	

[Petrov and Klein 07]

Projected Grammars

Final Results (Accuracy)

		≤ 40 words	all
		F1	F1
ŋ	Charniak&Johnson '05 (generative)	90.1	89.6
G	Split / Merge	90.6	90.1

GE	Dubey '05	76.3	_
R	Split / Merge	80.8	80.1

ç	Chiang et al. '02	80.0	76.6
Ŋ	Split / Merge	86.3	83.4

[Liang, Petrov, Jordan, & Klein '07]

[Petrov, Pauls, & Klein '07]

Unstructured Phone Models

Latent-variable grammar refinement

- Automatically learns good grammar splits
- Gives state-of-the-art parsing accuracy
- Admits very efficient parsing algorithms
- More applications beyond parsing!

Unsupervised Grammar Refinement

Unsupervised Coreference Resolution

Unsupervised Translation Mining

[Li et al 04, Haghighi and Klein 07] Generative Mention Models Weir Group Weir Group Weir HQ ... "Weir group". "whose" ... "headquarters" ...

Finite Mixture Model

University of California C A L N L P Berkeley

Finite Mixture Model

University of California C - A - L N L P Berkeley

Infinite Mixture Model

Mention Model

Ζ

P(W | *Weir Group*): "Weir Group"=0.4, "whose"=0.2,

.....

Enriching the Mention Model

Entity Parameters

Pronoun Parameters

W | PL, NEUT, ORG

"they":0.3, "it": 0.2,...

Pronoun Z G T W

Non-Pronoun

The Weir Group, whose headquarters is in the U.S is a large specialized corporation. This power plant, which, will be situated in Jiangsu, has a large generation capacity.

Salience Model

Entity	Activation
1	1.0
2	0.0

Salience Values

```
TOP, HIGH, MED,
LOW, NONE
```

Mention Type

Proper, Pronoun, Nominal

Salience Model

Entity	Activation
1	0.0
2	0.0

Entity	Activation
1	1.0
2	0.0

Entity	Activation
1	0.5
2	1.0

The Weir Group, whose headquarters is in the U.S is a large specialized corporation. This power plant, which, will be situated in Jiangsu, has a large generation capacity.

The Weir Group, whose headquarters is in the U.S is a large specialized corporation. This power plant, which, will be situated in Jiangsu, has a large generation capacity.

MUC6 English NWIRE (all mentions)

- 53.6 F1* [Cardie and Wagstaff 99] Unsupervised
- 70.3 F1 [Unsup Entity-Mention] Unsupervised
- 73.4 F1 [McCallum & Wellner 04] Supervised
- 81.3 F1 [Luo et al 04]

Supervised++

* MUC score

Fully generative unsupervised coref model

- Basic model of pronoun structure
- Sequential model of local attentional state
- HDP global coreference model ties documents
- Competitive with supervised results
 - Many features not exploited
 - Still lots of room to improve!

Unsupervised Grammar Refinement

Unsupervised Coreference Resolution

Unsupervised Translation Mining

Standard MT Approach

- Trained using parallel sentences
- May not always be available

MT from Monotext

Translation without parallel text?

[Fung 95, Koehn and Knight 02, Haghighi and Klein 08]

Task: Lexicon Induction

University of California

A

(P

C

Orthographic Features

#st	1.0
tat	1.0
te#	1.0

Context Features		
world	20.0	
politics	5.0	
society	10.0	

University of California C-A-L N L P Berkeley

Data Representation

<u>)rthographic Features</u>		
#st	1.0	
tat	1.0	
te#	1.0	
Context Features		
world	20.0	
politics	5.0	
society	10.0	

Target Text

Orthographic Features

#es	1.0
sta	1.0
do#	1.0

Context Features	
mundo	17.0
politica	10.0
sociedad	6.0

[Bach and Jordan 06]

Canonical Correlation Analysis

[Bach and Jordan 06]

Canonical Correlation Analysis

C

E-Step: Obtain posterior over matching

M-Step: Maximize CCA Parameters

$$\max_{(W_s, W_t)} \mathbb{E}_{P(\mathbf{m}|\mathbf{s}, \mathbf{t})} \left[\sum_{(i, j) \in \mathbf{m}} \log p(s_i, t_j | \mathbf{m}; W_s, W_t) \right]$$

Hard E-Step: Find best matching

 $w_{ij} = \log p(s_i, t_j | \mathbf{m}; W_s, W_t) - \log \mathrm{NULL}_S(s_i)$ $- \log \mathrm{NULL}_T(t_j)$

M-Step: Solve CCA

- Data: 2K most frequent nouns, texts from Wikipedia
- Seed: 100 translation pairs
- Evaluation: Precision and Recall against lexicon obtained from Wiktionary
 - Report p_{0.33}, precision at recall 0.33

Baseline: Edit Distance

Edit Dist

4k EN-ES Wikipedia Articles

MCCA: Only orthographic features

Edit Dist Ortho

4k EN-ES Wikipedia Articles

MCCA: Only context features

Edit Dist Ortho Context

4k EN-ES Wikipedia Articles

MCCA: Orthographic and context features

Feature Experiments

University of California C A L N L P Berkeley

Feature Experiments

- Automatic Seed
 - Edit distance seed [Koehn & Knight 02]

Auto Seed Gold Seed 4k EN-ES Wikipedia Articles

.

English-Spanish				
Source	Target	Correct		
education	educación	Y		
pacto	pact	Y		
stability	estabilidad	Y		
corruption	corrupción	Y		
tourism	turismo	Y		
organisation	organización	Υ		
convenience	conveniencia	Υ		
syria	siria	Y		
cooperation	cooperación	Y		
culture	cultura	Y		
protocol	protocolo	Y		
north	norte	Y		
health	salud	Y		
action	reacción	Ν		

Top Non-Cognates

health	salud
traceability	rastreabilidad
youth	juventud
report	informe
advantages	ventajas

Interesting Mistakes

liberal	partido
Kirkhope	Gorsel
action	reacción
Albanians	Bosnia
a.m.	horas
Netherlands	Bretaña

Language Variation

English-French			
Source	Target	Correct	
xenophobia	xénophobie	Y	
corruption	corruption	Y	
subsidiarity	subsidiarité	Y	
programme	programme-cadre	Ν	
traceability	traçabilité	Y	

English-Chinese				
Source	Target	Correct		
prices	价格	Y		
network	网络	Υ		
population	人口	Υ		
reporter	孙	Ν		
oil	石油	Υ		

Orthography Features

Source Feature	Closest Target Features	Example Translations
#st	#es, est	(statue,estatua)
ty#	ad#, d#	(felicity,felicidad)
ogy	gía, gí	(geology,geología)

Context Features

Source Feature	Closest Context Features
party	partido, izquierda
democrat	socialistas, demócratas
beijing	pekín, kioto

Learned bilingual lexicon from monotext

- Matching + CCA model
- Possible even from unaligned corpora
- Possible for non-related languages
- High-precision, but much left to do!

- Three cases of unsupervised learning of nontrivial linguistic structure for NLP problems
 - Incremental structure learning
 - Careful control of structured training
 - Targeted modeling choices
- In some cases, unsupervised systems are competitive with supervised systems (or better!)
- Much more left to do!

Thank you!

nlp.cs.berkeley.edu

Latent-Variable Grammar Learning

- Unsupervised Coreference Resolution
- Unsupervised Translation Mining
- Other Unsupervised Work

University of California N L P Berkeley

Problem: learning complex hidden-variable models Traditional solution: approximate EM

Weakly Supervised Learning

Newly remodeled 2 Bdrms/1 Bath, spacious upper unit, located in Hilltop Mall area. Walking distance to shopping, public transportation, schools and park. Paid water and garbage. No dogs allowed.

Prototype Lists

FEATURE	kitchen, laundry	
LOCATION	near, close	
TERMS	paid, utilities	
SIZE	large, feet	
RESTRICT	cat, smoking	

NN	president	IN	of
VBD	said	NNS	shares
CC	and	ТО	to
NNP	Mr.	PUNC	-
JJ	new	CD	million
DET	the	VBP	are

Information Extraction

English POS

Language Evolution

Gloss	Latin	Italian	Spanish	Portuguese
Word/verb	verbum	verbo	verbo	verb <mark>u</mark>
Fruit	fructus	frutta	fruta	fruta
Laugh	ridere	ridere	reir	rir
Center	centr <mark>u</mark> m	centro	centro	centro
August	aug <mark>u</mark> stus	ag <mark>o</mark> sto	ag <mark>o</mark> sto	ag <mark>o</mark> sto
Swim	natare	nuotare	nadar	nadar

University of California

A

Berkeley

Ρ

C

