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Motivation
Problem: 

With few instances, learned

models aren‟t robust
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Task: 

Shape modeling
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Transfer Learning
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Shape is stabilized, but doesn‟t

look like an elephant
Can we use rhinos 
to help elephants?
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Hierarchical Bayes
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Goals

 Transfer between related classes

 Range of settings, tasks

 Probabilistic motivation

 Multilevel, complex hierarchies

 Simple, efficient computation

 Automatically learn what to transfer



Hierarchical Bayes

qroot

qElephant qRhino

 Compute full posterior P(£|D)

 P(£c|£root) must be conjugate 
to P(D|£c)

Problem:

Often can’t perform full

Bayesian computations



Approx.: Point estimation

qroot
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 Empirical Bayes

 Point estimation

Other approximations:

Posterior as normal, 
sampling, etc.

Best parameters are good enough;

don’t need full distribution



More Issues: Multiple Levels

Conjugate priors usually can‟t be extended to

multiple levels (e.g., Dirichlet, inverse-Wishart)

Exception: Thibeaux and Jordan („05)



More Issues: Restrictive Priors

 Example: inverse-Wishart

 Pseudocount restriction

 n >= d

 If d is large, N is small, 
signal from prior 
overwhelms data

 We show experiments 
with N=3, d=20
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N = # samples, d = dimension
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Alternative: Shrinkage

McCallum et al. („98)

1. Compute maximum likelihood at each node

2. “Shrink” each node toward its parent

 Linear combination of q and q
parent

 Uses cross-validation of a

q
q* = aq + (1-a) q

parent

Pros:

 Simple to compute

 Handles multiple levels

Cons:

 Naive heuristic for transfer

 Averaging not always 

appropriate

qparent



Undirected HB Reformulation

Defines an undirected Markov

random field model over Q, D

Probabilistic 

Abstraction 

Hierarchies 

(Segal et al. ‘01)



Fdata: 

Encourage parameters to 

explain data

Undirected Probabilistic Model

qroot

Fdata Fdata

Divergence

b: high

qElephant qRhino

b: low

Divergence: 

Encourage parameters to 

be similar to parents

Divergence



Purpose of Reformulation

 Easy to specify

 Fdata can be likelihood, classification, or other objective

 Divergence can be L1-distance, L2-distance, 

e-insensitive loss, KL divergence, etc.

 No conjugacy or proper prior restrictions

 Easy to optimize

 Convex over Q if Fdata is convex and Divergence is 
concave



Task: Categorize Documents

Bag-of-words model

Fdata : Multinomial log likelihood (regularized)

µi represents frequency of word i

Divergence: L2 norm

Application: Text categorization

Newsgroup20

Dataset



Baselines
1. Maximum likelihood at each node (no hierarchy)

2. Cross-validate regularization (no hierarchy)

3. Shrinkage (McCallum et al. ‟98, with hierarchy)

qA qB

qparent

q q* = aq + (1-a) q
parent



Can It Handle Multiple Levels?
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Task: Learn shape

(Density estimation – test likelihood)

Instances represented by 60 x-y 

coordinates of landmarks on outline

Divergence:

L2 norm over mean and variance

Application: Shape Modeling

Mean landmark 

location

Covariance 

over landmarks

Regularization

MEAN

Principal

Components

Mammals Dataset 

(Fink, ’05)



Does Hierarchy Help?
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Unregularized max likelihood, shrinkage: Much worse, not shown



Transfer

Not all parameters deserve 

equal sharing



Split q into subcomponents µi with weights l 

Allows for different strengths for different 

subcomponents, child-parent pairs 

Degrees of Transfer

How do we estimate all 

these parameters?



Learning Degrees of Transfer
 Bootstrap approach

If      and            have a consistent relationship, want to 
encourage them to be similar

 Hyper-prior approach

Bayesian idea: 

Put prior on ¸

Add ¸ as parameter to optimization along with £

Concretely: inverse-Gamma prior (forced to be positive)

Prior on 

Degree of 

Transfer

If likelihood is 
concave, entire 
objective is convex!



Do Degrees of Transfer Help?
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Degrees of Transfer
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Summary

 Transfer between related classes

 Range of settings, tasks

 Probabilistic motivation

 Multilevel, complex hierarchies

 Simple, efficient computation

 Refined transfer of components



Future Work

 Non-tree hierarchies 

(multiple inheritance)

 Block degrees of transfer

 Structure learning

General undirected model 

doesn’t require tree structure

Part discovery

Gene Ontology 

(GO) network

WordNet 

Hierarchy


