Convex Point Estimation using Undirected Bayesian Transfer Hierarchies

Gal Elidan Ben Packer
Geremy Heitz
Daphne Koller

Stanford AI Lab

Task:

Shape modeling

Problem:

With few instances, learned models aren't robust

망| Transfer Learning

Can we use rhinos to help elephants?

Shape is stabilized, but doesn't look like an elephant

묭| Goals

- Transfer between related classes
- Range of settings, tasks
- Probabilistic motivation
- Multilevel, complex hierarchies
- Simple, efficient computation
- Automatically learn what to transfer

뫄 |Hierarchical Bayes

$$
P(\mathcal{D}, \Theta)=\prod_{c \in \mathcal{L}} P\left(\mathcal{D}^{c} \mid \Theta^{c}\right) \times \prod_{c \in \mathcal{C}} P\left(\Theta^{c} \mid \Theta^{p a r(c)}\right)
$$

 to $\mathrm{P}\left(\mathcal{D} \mid \Theta^{c}\right)$

Problem:
Often can't perform full Bayesian computations

Best parameters are good enough;

 don't need full distribution

- Empirical Bayes
- Point estimation

Other approximations:
Posterior as normal, sampling, etc.

묭|More Issues: Multiple Levels

Conjugate priors usually can't be extended to multiple levels (e.g., Dirichlet, inverse-Wishart)

Exception: Thibeaux and Jordan ('05)

More Issues: Restrictive Priors

- Example: inverse-Wishart
- Pseudocount restriction
- $v>=d$
- If d is large, N is small, signal from prior overwhelms data
- We show experiments with $N=3, d=20$

묭|Alternative: Shrinkage

McCallum et al. ('98)

1. Compute maximum likelihood at each node
2. "Shrink" each node toward its parent

- Linear combination of θ and $\theta^{\text {arame }}$

- Simple to compute
- Handles multiple levels

Cons:

- Naive heuristic for transfer
- Averaging not always appropriate

뮹| Undirected HB Reformulation

$$
\begin{aligned}
\log P(\mathcal{D}, \Theta)= & \sum_{c \in \mathcal{L}} \log P\left(\mathcal{D}^{c} \mid \Theta^{c}\right) \\
& +\sum_{c \in \mathcal{C}} \log P\left(\Theta^{c} \mid \Theta^{\text {par }(c)}\right) \\
F_{\text {joint }}(\Theta ; \mathcal{D})= & -\sum_{c \in \mathcal{L}} \mathcal{F}_{\text {data }}\left(\mathcal{D}^{c}, \Theta^{c}\right) \quad \begin{array}{l}
\text { Probabilistic } \\
\text { Abstraction } \\
\text { Hierarchies } \\
\text { (Segal et al. '01) }
\end{array} \\
& +\beta \sum \operatorname{Div}\left(\Theta^{c}, \Theta^{\text {par }(c)}\right)
\end{aligned}
$$

Defines an undirected Markov random field model over Θ, D

品|Purpose of Reformulation

$$
\begin{aligned}
F_{\text {joint }}(\Theta ; \mathcal{D})= & -\sum_{c \in \mathcal{L}} \mathcal{F}_{\text {data }}\left(\mathcal{D}^{c}, \Theta^{c}\right) \\
& +\beta \sum_{c \in \mathcal{C}} \operatorname{Div}\left(\Theta^{c}, \Theta^{\operatorname{par}(c)}\right)
\end{aligned}
$$

- Easy to specify
- $\mathrm{F}_{\text {data }}$ can be likelihood, classification, or other objective
- Divergence can be L1-distance, L2-distance, ε-insensitive loss, KL divergence, etc.
- No conjugacy or proper prior restrictions
- Easy to optimize
- Convex over Θ if $F_{\text {data }}$ is convex and Divergence is concave

№p|Application: Text categorization

Task: Categorize Documents

Newsgroup20 Dataset

Bag-of-words model
$\mathrm{F}_{\text {data }}$: Multinomial log likelihood (regularized)
θ_{i} represents frequency of word i
Divergence: L2 norm

1. Maximum likelihood at each node (no hierarchy)
2. Cross-validate regularization (no hierarchy)
3. Shrinkage (McCallum et al. '98, with hierarchy)

Newsgroup Topic Classification

 coordinates of landmarks on outline

Divergence:
L2 norm over mean and variance

Mammals Dataset
(Fink, '05)

Mammal Pairs

Unregularized max likelihood, shrinkage: Much worse, not shown

몽 Transfer

Not all parameters deserve equal sharing

뭉| Degrees of Transfer

$F_{\text {joint }}(\underline{\theta} \cdot \Lambda \cdot \mathcal{D})=-\sum_{c \in \mathcal{L}} \mathcal{F}_{\text {data }}\left(\mathcal{D}^{c}, \Theta^{c}\right)+\beta \sum_{c \in \mathcal{C}} \sum_{i} \frac{1}{\lambda_{i}^{c, p a r(c)}} \operatorname{Div}\left(\sqrt[\theta_{i}^{2}]{\theta} \cdot \underline{\theta_{i}^{\operatorname{par}(c)}}\right)$
How do we estimate all these parameters?
subcomponents, child-parent pairs

Learning Degrees of Transfer
 - Bootstrap approach

If θ_{i}^{c} and $\theta_{i}^{\operatorname{par}(c)}$ have a consistent relationship, want to encourage them to be similar

- Hyper-prior approach

Bayesian idea:
Put prior on λ
Add λ as parameter to optimization along with Θ
Concretely: inverse-Gamma prior (forced to be positive)

$$
F_{\text {joint }}(\Theta, \Lambda ; \mathcal{D})=\sum_{c}-\ell\left(\mathcal{D}^{c} ; \Theta^{c}\right)
$$

If likelihood is concave, entire objective is convex!

Distribution of DOT coefficients using Hyperprior

뭉|Summary

- Transfer between related classes
- Range of settings, tasks
- Probabilistic motivation
- Multilevel, complex hierarchies
- Simple, efficient computation
- Refined transfer of components

鋉| Future Work

- Non-tree hierarchies
(multiple inheritance)

General undirected model doesn't require tree structure

Gene Ontology (GO) network

WordNet Hierarchy

