

Convex Point Estimation using Undirected Bayesian Transfer Hierarchies

Gal Elidan

Ben Packer

Geremy Heitz

Daphne Koller

Task:

Shape modeling

Problem:

With few instances, learned models aren't robust

- Transfer between related classes
- Range of settings, tasks
- Probabilistic motivation
- Multilevel, complex hierarchies
- Simple, efficient computation
- Automatically learn what to transfer

root

Elephant

$$P(\mathcal{D}, \Theta) = \prod_{c \in \mathcal{L}} P(\mathcal{D}^c \mid \Theta^c) \times \prod_{c \in \mathcal{C}} P(\Theta^c \mid \Theta^{par(c)})$$

Compute full posterior P(Θ|D)
 P(Θ^c|Θ^{root}) must be conjugate to P(D|Θ^c)

Problem: Often can't perform full Bayesian computations

Best parameters are good enough; don't need full distribution

Empirical BayesPoint estimation

Other approximations: Posterior as normal, sampling, etc.

More Issues: Multiple Levels

Conjugate priors usually can't be extended to multiple levels (e.g., Dirichlet, inverse-Wishart) Exception: Thibeaux and Jordan ('05)

More Issues: Restrictive Priors

- Example: inverse-Wishart
 - Pseudocount restriction

- If d is large, N is small, signal from prior overwhelms data
- We show experiments with N=3, d=20

Alternative: Shrinkage

McCallum et al. ('98)

- 1. Compute maximum likelihood at each node
- 2. "Shrink" each node toward its parent
 - Linear combination of θ and θ^{parent}

Simple to compute

- Handles multiple levels
 Cons:
 - Naive heuristic for transfer
 - Averaging not always appropriate

Undirected HB Reformulation

Defines an undirected Markov random field model over Θ, D

explain data

be similar to parents

Purpose of Reformulation

$$\begin{aligned} F_{\text{joint}}(\Theta; \mathcal{D}) &= -\sum_{c \in \mathcal{L}} \mathcal{F}_{\text{data}}(\mathcal{D}^{c}, \Theta^{c}) \\ &+ \beta \sum_{c \in \mathcal{C}} \text{Div}(\Theta^{c}, \Theta^{par(c)}) \end{aligned}$$

Easy to specify

- F_{data} can be likelihood, classification, or other objective
- Divergence can be L1-distance, L2-distance, ε-insensitive loss, KL divergence, etc.
- No conjugacy or proper prior restrictions
- Easy to optimize
 - Convex over Θ if F_{data} is convex and Divergence is concave

Task: Categorize Documents

Newsgroup20 Dataset

Bag-of-words model

F_{data}: Multinomial log likelihood (regularized)

 θ_i represents frequency of word i

Divergence: L2 norm

- 1. Maximum likelihood at each node (no hierarchy)
- 2. Cross-validate regularization (no hierarchy)
- 3. Shrinkage (McCallum et al. '98, with hierarchy)

Newsgroup Topic Classification

Application: Shape Modeling

Task: Learn shape

(Density estimation – test likelihood) Instances represented by 60 x-y coordinates of landmarks on outline

 $\mathcal{F}_{data}(\mathcal{D}^{c},\Theta^{c}) = \sum_{m} \log \mathcal{N}(\mathbf{x}[m] \mid \mu^{c}, \Sigma^{c} + \alpha \mathcal{I})$

Covariance

over landmarks

Mean landmark location

Divergence:

L2 norm over mean and variance

Mammals Dataset (Fink, '05)

MEAN

Regularization

Principal

Components

Mammal Pairs

Unregularized max likelihood, shrinkage: Much worse, not shown

Not all parameters deserve equal sharing

theonia

$$F_{\text{joint}}(\Theta, \Lambda; \mathcal{D}) = -\sum_{c \in \mathcal{L}} \mathcal{F}_{\text{data}}(\mathcal{D}^{c}, \Theta^{c}) + \beta \sum_{c \in \mathcal{C}} \sum_{i} \frac{1}{\lambda_{i}^{c, par(c)}} \text{Div}(\theta_{i}^{c}, \theta_{i}^{par(c)})$$

subcomponents, child-parent pairs

Learning Degrees of Transfer

- Bootstrap approach
 - If θ_i^c and $\theta_i^{par(c)}$ have a consistent relationship, want to encourage them to be similar
- Hyper-prior approach
 - Bayesian idea:
 - Put prior on λ

Add λ as parameter to optimization along with Θ

Concretely: inverse-Gamma prior (forced to be positive)

$$F_{\text{joint}}(\Theta, \Lambda; \mathcal{D}) = \sum -\ell \left(\mathcal{D}^c; \Theta^c\right)$$

If likelihood is concave, entire objective is convex!

$$+ \beta \sum_{c \in \mathcal{L}} \sum_{i} \frac{(\theta_i^c - \theta_i^{par(c)})^2}{\lambda_i^{c, par(c)}}$$
 Prior on Degree of $-\sum_{c \in \mathcal{C}} \sum_{i} \log G^{-1}(\lambda_i^{c, par(c)})$ Transfer

Distribution of DOT coefficients using Hyperprior

- Transfer between related classes
- Range of settings, tasks
- Probabilistic motivation
- Multilevel, complex hierarchies
- Simple, efficient computation
- Refined transfer of components

Non-tree hierarchies (multiple inheritance)

General undirected model doesn't require tree structure

Gene Ontology (GO) network

WordNet Hierarchy

Block degrees of transfer

Part discovery

Structure learning