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Motivation
Problem: 

With few instances, learned

models aren‟t robust
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Shape modeling
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Transfer Learning
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Shape is stabilized, but doesn‟t

look like an elephant
Can we use rhinos 
to help elephants?
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Hierarchical Bayes
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Goals

 Transfer between related classes

 Range of settings, tasks

 Probabilistic motivation

 Multilevel, complex hierarchies

 Simple, efficient computation

 Automatically learn what to transfer



Hierarchical Bayes
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 Compute full posterior P(£|D)

 P(£c|£root) must be conjugate 
to P(D|£c)

Problem:

Often can’t perform full

Bayesian computations



Approx.: Point estimation
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 Empirical Bayes

 Point estimation

Other approximations:

Posterior as normal, 
sampling, etc.

Best parameters are good enough;

don’t need full distribution



More Issues: Multiple Levels

Conjugate priors usually can‟t be extended to

multiple levels (e.g., Dirichlet, inverse-Wishart)

Exception: Thibeaux and Jordan („05)



More Issues: Restrictive Priors

 Example: inverse-Wishart

 Pseudocount restriction

 n >= d

 If d is large, N is small, 
signal from prior 
overwhelms data

 We show experiments 
with N=3, d=20
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Alternative: Shrinkage

McCallum et al. („98)

1. Compute maximum likelihood at each node

2. “Shrink” each node toward its parent

 Linear combination of q and q
parent

 Uses cross-validation of a

q
q* = aq + (1-a) q

parent

Pros:

 Simple to compute

 Handles multiple levels

Cons:

 Naive heuristic for transfer

 Averaging not always 

appropriate

qparent



Undirected HB Reformulation

Defines an undirected Markov

random field model over Q, D

Probabilistic 

Abstraction 

Hierarchies 

(Segal et al. ‘01)



Fdata: 

Encourage parameters to 

explain data

Undirected Probabilistic Model
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b: low

Divergence: 

Encourage parameters to 

be similar to parents

Divergence



Purpose of Reformulation

 Easy to specify

 Fdata can be likelihood, classification, or other objective

 Divergence can be L1-distance, L2-distance, 

e-insensitive loss, KL divergence, etc.

 No conjugacy or proper prior restrictions

 Easy to optimize

 Convex over Q if Fdata is convex and Divergence is 
concave



Task: Categorize Documents

Bag-of-words model

Fdata : Multinomial log likelihood (regularized)

µi represents frequency of word i

Divergence: L2 norm

Application: Text categorization

Newsgroup20

Dataset



Baselines
1. Maximum likelihood at each node (no hierarchy)

2. Cross-validate regularization (no hierarchy)

3. Shrinkage (McCallum et al. ‟98, with hierarchy)

qA qB

qparent

q q* = aq + (1-a) q
parent



Can It Handle Multiple Levels?
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Task: Learn shape

(Density estimation – test likelihood)

Instances represented by 60 x-y 

coordinates of landmarks on outline

Divergence:

L2 norm over mean and variance

Application: Shape Modeling

Mean landmark 

location

Covariance 

over landmarks

Regularization
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Mammals Dataset 

(Fink, ’05)



Does Hierarchy Help?
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Unregularized max likelihood, shrinkage: Much worse, not shown



Transfer

Not all parameters deserve 

equal sharing



Split q into subcomponents µi with weights l 

Allows for different strengths for different 

subcomponents, child-parent pairs 

Degrees of Transfer

How do we estimate all 

these parameters?



Learning Degrees of Transfer
 Bootstrap approach

If      and            have a consistent relationship, want to 
encourage them to be similar

 Hyper-prior approach

Bayesian idea: 

Put prior on ¸

Add ¸ as parameter to optimization along with £

Concretely: inverse-Gamma prior (forced to be positive)

Prior on 

Degree of 

Transfer

If likelihood is 
concave, entire 
objective is convex!



Do Degrees of Transfer Help?
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Degrees of Transfer
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Summary

 Transfer between related classes

 Range of settings, tasks

 Probabilistic motivation

 Multilevel, complex hierarchies

 Simple, efficient computation

 Refined transfer of components



Future Work

 Non-tree hierarchies 

(multiple inheritance)

 Block degrees of transfer

 Structure learning

General undirected model 

doesn’t require tree structure

Part discovery

Gene Ontology 

(GO) network

WordNet 

Hierarchy


