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% |Undirected Graphical Models

= Undirected graphical model:
= Random vector: (Xy, X,, ..., Xy)
=« Graph G = (V,E) with N vertices
= 0: Model parameters

= Inference T H38 HI
« Intractable when densely connected

= Approximate Inference (e.g., BP) : : :
can work well
= How to learn 6 given data? ( ) ( ) <: >
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% |Maximizing Likelihood with BP

Learning: L-BFGS = MREF Likelihood is convex
P = CG/LBFGS
= Estimate gradient with BP*
Inference = BP is finding fixed point of
o non-convex problem
Log Likelihood = Multiple local minima
L(6), V, L(6) - Convergence
= Unstable double-loop
Update 6 learning algorithm

* Shental et al., 2003; Taskar et al., 2002;
Sutton & McCallum, 2005
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Goal: Image segmentation &
labeling

Model: Conditional Random Field

= Nodes: Superpixel class labels
= Edges: Dependency relations

Dense network with tight loops
Potentials => BP converges anyway

almost never converges
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? Multiclass Image Segmentation

Simplified Example
.. . ( Gould et al., Multi-Class
However, BP in inner loop of learning segmentation with Relative

Location Prior, 1IJCV 2008)



'6’ Our Solution

Unified variational objective for parameter learning

= Can be applied to any entropy approximation
= Convergent algorithm for non-convex entropies

= Accomodates parameter sharing, regularization,
conditional training

= Extends several existing objectives/methods
= Piecewise training (Sutton and McCallum, 2005)
= Unified propagation and scaling (Teh and Welling, 2002)
= Pseudo-moment matching (Wainwright et al, 2003)
= Estimating the wrong graphical model (Wainwright, 2006)
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Log Linear Pairwise MRFs
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All results apply to general MRFs
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>4 Maximum Entropy

maximizeg Hg(X) Entropy
subject to Eq|f] = Ep|f] Moment Matching
D @) =1 Normalization

Q(x) > 0 Non-negativity

= Equivalent to maximum likelihood
= Intuition

= Regularization and conditional training can be
handled easily (see paper)

= () is exponential in number of variables
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:*4 Maximum Entropy

maximizeg Hg(X) Entropy
subject to Eg|f] = Ep|f] Moment Matching
> .. Qlx) = Normalization

Q(x) >0 Non-negativity

{ Margiriz;s_] 1

maximize, » . n.H(m.) Approximate Entropy
subject to Ex[f] = ﬁ[ ] Moment Matching
Zxc Telze] =1 Normalization

m >0 Non-negativity

in Tij|Tiy 5] = 5 |5] Local Consistency
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% | CAMEL

maximize, > . n.H(m) Approximate Entropy
subject to  Ex[f] = Ep|f] Moment Matching
Zxc Telze] =1 Normalization
T >0 Non-negativity
in mij|Ti, 5] = mil25) Local Consistency

= Concavity depends on counting humbers n,

= Bethe (non-concave):
= Singletons: n. = 1 - deg(z;)
= Edge Cliques: n.=1
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% |Simple CAMEL

maximize Zc H(r.) Approximate Entropy
subject to  Ex[f] = Eg [ ] Moment Matching
D %] 1 Normalization

> U Non-negativity

in mij|Ti, 5] = mil25) Local Consistency

= Simple concave objective:
s foralle, n,=1
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¥ |Piecewise Training™

maximize Zc H(m c) Approximate Entropy
subject to Ex[f] = Es|f] Moment Matching
Zxc e [%] 1 Normalization

>0 Non-negativity

T

= Simply drop the marginal consistency constraints

= Dual objective is the sum of local likelihood terms
of cliques

* Sutton & McCallum, 2005
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'6' Convex-Concave Procedure

Objective:
Convex(x) + Concave(x)

Used by Yuille, 2003

Approximate Objective:
g'x + Concave(x)

Repeat:
= Maximize approximate objective
= Choose new approximation

Guaranteed to converge to fixed point
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1 Algorithm

= Repeat
= Choose g to linearize about current point

mMaximize, Zc H(’FT c) + gTﬂ' Approximate Entropy
subject to  Ex[f] = Ep|f] Moment Matching
Zxc melze] =1 Normalization
m >0 Non-negativity
in mij|Ti, 5] = 75 |x] Local Consistency

= Solve unconstrained dual problem
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'6' Dual Problem

= Sum of local likelihood terms
= Similar to multiclass logistic regression
= ¢ iS a bias term for each cluster

= Local consistency constraints reduce to another
feature

=« Lagrange multipliers that correspond to weights
and messages

= Simultaneous inference and learning

= Avoids problem of setting convergence
threshold

Ganapathi, Vickrey, Duchi, Koller 14



>4 Experiments

= Algorithms Compared:

= Double loop with BP in inner loop
= Residual Belief Propagation (Elidan et al., 2006)
= Save messages between calls
= Reset messages during line search
= 10 restarts with random messages

= Camel + Bethe

« Simple Camel

= Piecewise (Simple Camel w/o local consistency)
= All used L-BFGS (Zhu et al, 1997)
= BP at test time
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Y Segmentation

= Variable for each superpixel

= / Classes: Rhino,Polar Bear, Water, Snow,
Vegetation, Sky, Ground

= 84 parameters
= Lots of loops
= Densely connected
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% [INamed Entity Recognition

= Variable for each word
= 4 Classes: Person, Location, Organization, Misc.

= Skip Chain CRF (Sutton and McCallum, 2004)

= Words connected in a chain
= Long-range dependencies for repeated words

= ~400Kk features, ~3 million weights

Speaker John Smith Professor Smith will
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Results
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NER Segmentation

O Bethe Camel B Simple Camel 0O Piecewise 0O Loopy

= Small number of relinearizations (<10)
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DISCUSSIOn

@ Loca> @;6 Moment >

Segmentation

= Local consistency constraints add good bias

= NER has millions of moment-matching constraints

= Moment matching = learned distribution ~ empirical
— |ocal consistency naturally satisfied

= Segmentation has only 84 parameters
= = Local consistency rarely satisified
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'6’ Conclusions

= CAMEL algorithm unifies learning and inference
= Optimizes Bethe approximation to entropy

= Repeated convex optimization with simple form
= Only few iterations required (can stop early too!)

= Convergent
= Stable

= Our results suggest that constraints on the
probability distribution are more important to
learning than the entropy approximations
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'5’ Future Work

= For inference, evaluate relative benefit of
approximations to entropy and constraints

= Learn with tighter outer bounds on marginal
polytope

= New optimization methods to exploit structure of
constraints
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2% g Related Work

= Unified Propagation and Scaling-Teh & Welling, 2002

= Similar idea in using Bethe entropy and local constraints for
learning
= No parameter sharing, conditional training and regularization

= Optimization (updates one coordinate at a time) procedure does
not work well when there is large amount of parameter sharing
= Pseudo-moment matching-Wainwright et al, 2003
= No parameter sharing, conditional training, and regularization

= Falls out of our formulation because it corresponds to case where
there is only one feasible point in the moment-matching

constraints
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2 Running Time

= NER dataset
= piecewise is about twice as fast

= Segmentation dataset

= Pay large cost because you have many more dual
parameters (several per edge)

= But you get an improvement
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¥ |LBP as Optimization

= Bethe Free Energy

EQZIngg—ZH(WZ ZH Z mi(c;))
[ )

Ci\Si;

= Constraints on pseudo-margmals
= Pairwise Consistency: >, m;; = 7,

= Local Normalization: > 7, = 1
= Non-negativity: 7, > 0
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% |Optimizing Bethe CAMEL

Solve
maximize, ;g CijH(miz) + )0y ciH(m) + ol
subject to Ex|f] = Es|f]
Z:r;c ﬂ-C[SEC] =1

T >0

D, Tig|Tis 5] = w525

Relinearize
g < V(2 deg(i) H(m,)) [m]
Similar concept used in CCCP algorithm (Yuille et al, 2002)
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Maximizing Likelihood with BP

[ Init 0 J Con
C al.
Loo* BP = Maximize likelihood of data
i = Optimization difficult:

= Inference doesn’t converge

=« Inference has multiple local
minima

CG/LBFGS: = CG/LBFGS fail!

Update 0

| Finished |

LLoopy BP searches for a fixed point of a non-convex problem
(Yedidia et. al, Generalized Belief Propagation, 2002 )




