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Undirected Graphical Models

 Undirected graphical model:

 Random vector: (X1, X2, …, XN)

 Graph G = (V,E) with N vertices

 µ: Model parameters

 Inference

 Intractable when densely connected

 Approximate Inference (e.g., BP) 
can work well

 How to learn µ given data?
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Maximizing Likelihood with BP

 MRF Likelihood is convex

 CG/LBFGS

 Estimate gradient with BP*

 BP is finding fixed point of 
non-convex problem

 Multiple local minima

 Convergence

 Unstable double-loop 
learning algorithm

Learning: L-BFGS

µ

Inference

Log Likelihood 

L(µ), rµ L(µ)

Update µ

* Shental et al., 2003; Taskar et al., 2002; 
Sutton & McCallum, 2005
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Multiclass Image Segmentation

( Gould et al., Multi-Class 

Segmentation with Relative 

Location Prior, IJCV 2008)

Simplified Example

 Goal: Image segmentation & 
labeling

 Model: Conditional Random Field

 Nodes: Superpixel class labels

 Edges: Dependency relations

 Dense network with tight loops

 Potentials => BP converges anyway

 However, BP in inner loop of learning 
almost never converges
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Our Solution

Unified variational objective for parameter learning

 Can be applied to any entropy approximation

 Convergent algorithm for non-convex entropies 

 Accomodates parameter sharing, regularization, 
conditional training 

 Extends several existing objectives/methods

 Piecewise training (Sutton and McCallum, 2005)

 Unified propagation and scaling (Teh and Welling, 2002)

 Pseudo-moment matching (Wainwright et al, 2003)

 Estimating the wrong graphical model (Wainwright, 2006)

http://images.google.com/imgres?imgurl=http://www.solarnavigator.net/animal_kingdom/animal_images/Camel_Jordanian_Desert.jpg&imgrefurl=http://www.solarnavigator.net/animal_kingdom/mammals/camel.htm&h=302&w=320&sz=19&hl=en&start=5&sig2=qIPMq0RDPOz0aVtxc_kbsQ&tbnid=WOS3Uoe5fKIVrM:&tbnh=111&tbnw=118&ei=B65zSPOTO5OWxAH_tdyIBA&prev=/images%3Fq%3Dcamel%26gbv%3D2%26hl%3Den%26sa%3DG
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Log Linear Pairwise MRFs

All results apply to general MRFs

Edge Potentials

Node Potentials
Cliques

(pseudo) marginals
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Maximum Entropy

 Equivalent to maximum likelihood

 Intuition

 Regularization and conditional training can be 
handled easily (see paper)

 Q is exponential in number of variables

Entropy

Moment Matching

Normalization

Non-negativity
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Maximum Entropy

Entropy

Moment Matching

Normalization

Non-negativity

Approximate Entropy

Moment Matching

Local Consistency

Normalization

Non-negativity

Marginals
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CAMEL

Approximate Entropy

Moment Matching

Local Consistency

Normalization

Non-negativity

 Concavity depends on counting numbers nc

 Bethe (non-concave):
 Singletons: nc = 1 - deg(xi)

 Edge Cliques: nc = 1
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Simple CAMEL

Approximate Entropy

Moment Matching

Local Consistency

Normalization

Non-negativity

 Simple concave objective: 

 for all c,  nc = 1
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Piecewise Training*

Approximate Entropy

Moment Matching

Local Consistency

Normalization

Non-negativity

 Simply drop the marginal consistency constraints

 Dual objective is the sum of local likelihood terms 
of cliques

* Sutton & McCallum, 2005
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Convex-Concave Procedure

 Objective:
Convex(x) + Concave(x)

 Used by Yuille, 2003

 Approximate Objective:
gTx + Concave(x)

 Repeat:

 Maximize approximate objective

 Choose new approximation

 Guaranteed to converge to fixed point
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Algorithm
 Repeat

 Choose g to linearize about current point

 Solve unconstrained dual problem

Approximate Entropy

Moment Matching

Local Consistency

Normalization

Non-negativity
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Dual Problem

 Sum of local likelihood terms
 Similar to multiclass logistic regression

 g is a bias term for each cluster

 Local consistency constraints reduce to another 
feature

 Lagrange multipliers that correspond to weights 
and messages

 Simultaneous inference and learning
 Avoids problem of setting convergence 

threshold
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Experiments
 Algorithms Compared:

 Double loop with BP in inner loop
 Residual Belief Propagation (Elidan et al., 2006)

 Save messages between calls

 Reset messages during line search

 10 restarts with random messages

 Camel + Bethe

 Simple Camel

 Piecewise (Simple Camel w/o local consistency)

 All used L-BFGS (Zhu et al, 1997)

 BP at test time
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Segmentation

 Variable for each superpixel

 7 Classes: Rhino,Polar Bear, Water, Snow, 
Vegetation, Sky, Ground

 84 parameters

 Lots of loops

 Densely connected
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Named Entity Recognition

 Variable for each word

 4 Classes: Person, Location, Organization, Misc.

 Skip Chain CRF (Sutton and McCallum, 2004)

 Words connected in a chain

 Long-range dependencies for repeated words

 ~400k features, ~3 million weights

X0 X1 X2 X100 X101 X102

Speaker John Smith Professor Smith will 



Ganapathi, Vickrey, Duchi, Koller 18

Results
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Discussion

 Local consistency constraints add good bias

 NER has millions of moment-matching constraints
 Moment matching  learned distribution ¼ empirical     

 local consistency naturally satisfied

 Segmentation has only 84 parameters

  Local consistency rarely satisified

Local

NER

Moment

Segmentation

MomentLocal
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Conclusions

 CAMEL algorithm unifies learning and inference

 Optimizes Bethe approximation to entropy

 Repeated convex optimization with simple form

 Only few iterations required (can stop early too!) 

 Convergent

 Stable

 Our results suggest that constraints on the 
probability distribution are more important to 
learning than the entropy approximations
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Future Work

 For inference, evaluate relative benefit of 
approximations to entropy and constraints

 Learn with tighter outer bounds on marginal 
polytope

 New optimization methods to exploit structure of 
constraints



Ganapathi, Vickrey, Duchi, Koller 22

Related Work
 Unified Propagation and Scaling-Teh & Welling, 2002

 Similar idea in using Bethe entropy and local constraints for 
learning

 No parameter sharing, conditional training and regularization

 Optimization (updates one coordinate at a time) procedure does 
not work well when there is large amount of parameter sharing

 Pseudo-moment matching-Wainwright et al, 2003
 No parameter sharing, conditional training, and regularization

 Falls out of our formulation because it corresponds to case where 
there is only one feasible point in the moment-matching 
constraints
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Running Time

 NER dataset

 piecewise is about twice as fast

 Segmentation dataset

 Pay large cost because you have many more dual 
parameters (several per edge)

 But you get an improvement
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 Bethe Free Energy

 Constraints on pseudo-marginals
 Pairwise Consistency: x¼ij = ¼j

 Local Normalization:  ¼i = 1

 Non-negativity: ¼i ¸ 0

LBP as Optimization
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Optimizing Bethe CAMEL

g Ã r¼(i deg(i) H(¼i)) [¼*]

Relinearize

Solve

Similar concept used in CCCP algorithm (Yuille et al, 2002)
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Maximizing Likelihood with BP

 Goal: 

 Maximize likelihood of data

 Optimization difficult:

 Inference doesn’t converge

 Inference has multiple local 
minima

 CG/LBFGS fail!

Init µ

Done?CG/LBFGS:

Update µ

Loopy BP

No

Yes

L(µ), rµ L(µ)

Finished

Loopy BP searches for a fixed point of a non-convex problem 

(Yedidia et. al, Generalized Belief Propagation, 2002 )


