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Undirected Graphical Models

 Undirected graphical model:

 Random vector: (X1, X2, …, XN)

 Graph G = (V,E) with N vertices

 µ: Model parameters

 Inference

 Intractable when densely connected

 Approximate Inference (e.g., BP) 
can work well

 How to learn µ given data?
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Maximizing Likelihood with BP

 MRF Likelihood is convex

 CG/LBFGS

 Estimate gradient with BP*

 BP is finding fixed point of 
non-convex problem

 Multiple local minima

 Convergence

 Unstable double-loop 
learning algorithm

Learning: L-BFGS

µ

Inference

Log Likelihood 

L(µ), rµ L(µ)

Update µ

* Shental et al., 2003; Taskar et al., 2002; 
Sutton & McCallum, 2005
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Multiclass Image Segmentation

( Gould et al., Multi-Class 

Segmentation with Relative 

Location Prior, IJCV 2008)

Simplified Example

 Goal: Image segmentation & 
labeling

 Model: Conditional Random Field

 Nodes: Superpixel class labels

 Edges: Dependency relations

 Dense network with tight loops

 Potentials => BP converges anyway

 However, BP in inner loop of learning 
almost never converges
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Our Solution

Unified variational objective for parameter learning

 Can be applied to any entropy approximation

 Convergent algorithm for non-convex entropies 

 Accomodates parameter sharing, regularization, 
conditional training 

 Extends several existing objectives/methods

 Piecewise training (Sutton and McCallum, 2005)

 Unified propagation and scaling (Teh and Welling, 2002)

 Pseudo-moment matching (Wainwright et al, 2003)

 Estimating the wrong graphical model (Wainwright, 2006)

http://images.google.com/imgres?imgurl=http://www.solarnavigator.net/animal_kingdom/animal_images/Camel_Jordanian_Desert.jpg&imgrefurl=http://www.solarnavigator.net/animal_kingdom/mammals/camel.htm&h=302&w=320&sz=19&hl=en&start=5&sig2=qIPMq0RDPOz0aVtxc_kbsQ&tbnid=WOS3Uoe5fKIVrM:&tbnh=111&tbnw=118&ei=B65zSPOTO5OWxAH_tdyIBA&prev=/images%3Fq%3Dcamel%26gbv%3D2%26hl%3Den%26sa%3DG
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Log Linear Pairwise MRFs

All results apply to general MRFs

Edge Potentials

Node Potentials
Cliques

(pseudo) marginals
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Maximum Entropy

 Equivalent to maximum likelihood

 Intuition

 Regularization and conditional training can be 
handled easily (see paper)

 Q is exponential in number of variables

Entropy

Moment Matching

Normalization

Non-negativity
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Maximum Entropy

Entropy

Moment Matching

Normalization

Non-negativity

Approximate Entropy

Moment Matching

Local Consistency

Normalization

Non-negativity

Marginals
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CAMEL

Approximate Entropy

Moment Matching

Local Consistency

Normalization

Non-negativity

 Concavity depends on counting numbers nc

 Bethe (non-concave):
 Singletons: nc = 1 - deg(xi)

 Edge Cliques: nc = 1
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Simple CAMEL

Approximate Entropy

Moment Matching

Local Consistency

Normalization

Non-negativity

 Simple concave objective: 

 for all c,  nc = 1
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Piecewise Training*

Approximate Entropy

Moment Matching

Local Consistency

Normalization

Non-negativity

 Simply drop the marginal consistency constraints

 Dual objective is the sum of local likelihood terms 
of cliques

* Sutton & McCallum, 2005
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Convex-Concave Procedure

 Objective:
Convex(x) + Concave(x)

 Used by Yuille, 2003

 Approximate Objective:
gTx + Concave(x)

 Repeat:

 Maximize approximate objective

 Choose new approximation

 Guaranteed to converge to fixed point
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Algorithm
 Repeat

 Choose g to linearize about current point

 Solve unconstrained dual problem

Approximate Entropy

Moment Matching

Local Consistency

Normalization

Non-negativity
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Dual Problem

 Sum of local likelihood terms
 Similar to multiclass logistic regression

 g is a bias term for each cluster

 Local consistency constraints reduce to another 
feature

 Lagrange multipliers that correspond to weights 
and messages

 Simultaneous inference and learning
 Avoids problem of setting convergence 

threshold
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Experiments
 Algorithms Compared:

 Double loop with BP in inner loop
 Residual Belief Propagation (Elidan et al., 2006)

 Save messages between calls

 Reset messages during line search

 10 restarts with random messages

 Camel + Bethe

 Simple Camel

 Piecewise (Simple Camel w/o local consistency)

 All used L-BFGS (Zhu et al, 1997)

 BP at test time
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Segmentation

 Variable for each superpixel

 7 Classes: Rhino,Polar Bear, Water, Snow, 
Vegetation, Sky, Ground

 84 parameters

 Lots of loops

 Densely connected
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Named Entity Recognition

 Variable for each word

 4 Classes: Person, Location, Organization, Misc.

 Skip Chain CRF (Sutton and McCallum, 2004)

 Words connected in a chain

 Long-range dependencies for repeated words

 ~400k features, ~3 million weights

X0 X1 X2 X100 X101 X102

Speaker John Smith Professor Smith will 
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Results

50

55

60

65

70

75

80

85

90

NER Segmentation

F
1
/A

c
c
u

ra
c
y

Bethe Camel Simple Camel Piecew ise Loopy

 Small number of relinearizations (<10)
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Discussion

 Local consistency constraints add good bias

 NER has millions of moment-matching constraints
 Moment matching  learned distribution ¼ empirical     

 local consistency naturally satisfied

 Segmentation has only 84 parameters

  Local consistency rarely satisified

Local

NER

Moment

Segmentation

MomentLocal
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Conclusions

 CAMEL algorithm unifies learning and inference

 Optimizes Bethe approximation to entropy

 Repeated convex optimization with simple form

 Only few iterations required (can stop early too!) 

 Convergent

 Stable

 Our results suggest that constraints on the 
probability distribution are more important to 
learning than the entropy approximations
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Future Work

 For inference, evaluate relative benefit of 
approximations to entropy and constraints

 Learn with tighter outer bounds on marginal 
polytope

 New optimization methods to exploit structure of 
constraints
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Related Work
 Unified Propagation and Scaling-Teh & Welling, 2002

 Similar idea in using Bethe entropy and local constraints for 
learning

 No parameter sharing, conditional training and regularization

 Optimization (updates one coordinate at a time) procedure does 
not work well when there is large amount of parameter sharing

 Pseudo-moment matching-Wainwright et al, 2003
 No parameter sharing, conditional training, and regularization

 Falls out of our formulation because it corresponds to case where 
there is only one feasible point in the moment-matching 
constraints
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Running Time

 NER dataset

 piecewise is about twice as fast

 Segmentation dataset

 Pay large cost because you have many more dual 
parameters (several per edge)

 But you get an improvement
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 Bethe Free Energy

 Constraints on pseudo-marginals
 Pairwise Consistency: x¼ij = ¼j

 Local Normalization:  ¼i = 1

 Non-negativity: ¼i ¸ 0

LBP as Optimization
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Optimizing Bethe CAMEL

g Ã r¼(i deg(i) H(¼i)) [¼*]

Relinearize

Solve

Similar concept used in CCCP algorithm (Yuille et al, 2002)
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Maximizing Likelihood with BP

 Goal: 

 Maximize likelihood of data

 Optimization difficult:

 Inference doesn’t converge

 Inference has multiple local 
minima

 CG/LBFGS fail!

Init µ

Done?CG/LBFGS:

Update µ

Loopy BP

No

Yes

L(µ), rµ L(µ)

Finished

Loopy BP searches for a fixed point of a non-convex problem 

(Yedidia et. al, Generalized Belief Propagation, 2002 )


