
CORL: A Continuous-state 

Offset-dynamics 

Reinforcement Learner
Emma Brunskill, Bethany R. Leffler, Lihong 

Li, Michael L. Littman and 

Nicholas Roy
Massachusetts Institute of Technology

Rutgers University

July 2008



Motivation

• Solve large reinforcement learning (RL) problems

• Leverage world structure for faster learning
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Contributions

• RL algorithm for typed continuous domains with 

noisy offset dynamics

• Prove amount of experience needed scales 

polynomially with state space dimension

• Explicitly consider error due to approximate 

planning

• Robot experiment shows dynamics model 

approximation adequate for real world learning



Reinforcement Learning

World

Agent

ActionState

Reward

Goal: Maximize expected sum of future rewards 



World Representation

(12.3752,13.8763) Grid Cell 17 or

At(Robot,Kitchen)

vs



Dynamics Representation

All states 

different

Representational Power

Generalization

All states 
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states

Leffler et al.

Kearns & Singh

Strehl & Littman



Dynamics Representation

All states 

different

Representational Power

Generalization

All states 

same

All types 

different,

discrete

states

Leffler et al.

Kearns & Singh

Strehl & Littman
CORL: 

all types 

different, 

noisy offset



CORL Dynamics

• Continuous-valued states S

• Finite set of types M

• Known function Type: SM

• Noisy offset typed 

dynamics
Left

0 2 s

Start

0 2 s’ = s-2 + noise

End

Moves 2 over



CORL Offset-Typed Dynamics



s  s m,a  

m  Type(s)

 ~ N(0,m,a )

Learn



(Dudek et al.’s AQUA robot  http://www.aquarobot.net:8080/AQUA)/; http://maps.google.com

http://www.aquarobot.net:8080/AQUA)/
http://maps.google.com


Model-based RL

Act in world

Think hard: estimate models & plan



Balancing Exploration with 

Exploitation

Probably Approximately Correct (PAC): learn

quickly but do not require optimality during learning



PAC RL Approaches

• Discrete states & actions: E3 (Kearns and 
Singh 1998), R-max (Brafman & Tenneholtz 
2002)

• Discrete typed offset: RAM-Rmax (Leffler et 
al. 2007)

• Continuous linear dynamics with known 
variance: (Strehl & Littman 2008) 

• Continuous typed offset with unknown 
variance: CORL



Small Example
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R-max Algorithm: Initialize

Reward

Transition

Counts

Known/

Unknown

S1 S2 S3 S4 …

U U U U

U U U U

U U U U

U U U U

S1 S2 S3 S4 …

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

S1 S2 S3 S4 …

Rmax Rmax Rmax Rmax

Rmax Rmax Rmax Rmax

Rmax Rmax Rmax Rmax

Rmax Rmax Rmax Rmax

Create “known” MDP



R-max: Solve & Act

• Solve “known” MDP

• Take best action



R-max Algorithm: Update

Reward

Transition

Counts

Known/

Unknown

S2 S2 S3 S4 …

U U U U

U U U U

U U U U

U U U U

S2 S2 S3 S4 …

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

S2 S2 S3 S4 …

Rmax Rmax Rmax Rmax

Rmax Rmax Rmax Rmax

Rmax Rmax Rmax Rmax

Rmax Rmax Rmax Rmax

Increment counts for 

state-action tuple



R-max Algorithm: Update Cont.

Reward

Transition

Counts

Known/

Unknown

S2 S2 S3 S4 …

U U U U

U U K U

U U U U

U U U U

S2 S2 S3 S4 …

3 3 4 3

2 4 5 0

4 0 4 4

2 2 4 1

S2 S2 S3 S4 …

Rmax Rmax Rmax Rmax

Rmax Rmax R Rmax

Rmax Rmax Rmax Rmax

Rmax Rmax Rmax Rmax

If counts for (s,a) > N, 

use estimated models 

for (s,a) when 

planning



R-max Algorithm

Solve known MDP



R-max Algorithm

Act using 

solution

Solve known MDP



R-max Algorithm

Act using 

solution

Update state-action 

counts

Solve known MDP



R-max Algorithm

Act using 

solution

Update state-action 

counts

Update known 

dynamics & reward 

models

Solve known MDP



CORL: Initialization

Reward

Transition

Counts

Known/

Unknown

S2 S2

U U

U U

U U

U U

S2

0 0

0 0

0 0

0 0

S2 S2

Rmax Rmax

Rmax Rmax

Rmax Rmax

Rmax Rmax

Types



CORL Algorithm: Solve

• No exact planner for general continuous-state 
MDPs

• Use Fitted Value Iteration to approximately solve



CORL Algorithm: Solve

• No exact planner for general continuous-state 
MDPs

• Use Fitted Value Iteration to approximately solve
– Perform Bellman backups at a finite set of states

– Approximate value at other states using function 
approximation 

• Consider this error in sample complexity bounds



CORL Algorithm: Act

Take best action given approximate solution



CORL: Update Counts

Transition

Counts

Known/

Unknown

S2 S2

U U

U U

U U

U U

S2

0 0

1 0

0 0

0 0

S2 S2

Rmax Rmax

Rmax Rmax

Rmax Rmax

Rmax Rmax

Increment counts for 

type-action tuple

Types

Reward



CORL: Label Known Tuples

Transition

Counts

Known/

Unknown

S2 S2

U U

K U

U U

U U

S2

1 3

5 2

4 4

2 3

S2 S2

Rmax Rmax

R Rmax

Rmax Rmax

Rmax Rmax

Label state-type as 

known when counts 

exceed threshold

Types

Reward



CORL: Estimate Dynamics

For known type-action tuples estimate 

dynamics parameters from experience



CORL Algorithm

Act using 

approximate 

solution

Update type-action

counts

Update known 

dynamics & reward 

models

Approximately solve 

known MDP



Complexity

Act in world

Think hard: estimate models & plan

Sample 

complexity



Complexity

Act in world

Think hard: estimate models & plan

Computational 

complexity



Theoretical Results

• Estimate offset dynamics parameters 

• For diagonal covariance, approximate model 

can be used to get near-optimal behavior

• Bound error due to approximate planning 

(Chow and Tsitsiklis 1991)

• Combine ideas to bound sample complexity



CORL Theorem

Assuming

• a continuous-state noisy offset dynamics 
MDP with diagonal covariances

Given

•  and 

• |M| types

• Variance along each dimension of all the 
dynamics models bounded by

• Each offset parameter bounded by



min
2 ,B

2 



i  B



CORL Theorem

Then on all but Ntotal timesteps CORL will 

follow a 4-optimal policy with probability at 

least 1-2, where



Ntotal  poly Ndim, A,M ,
1


,
1


,
1

1
,
1

min
,B ,B













Sample Complexity Results

|S| = size of the state space, 

|A| = number of actions, 

|M| = number of types, 

Ndim = dimensionality of the state space

R-max

RAM-Rmax

CORL



Sample Complexity Summary

R-max

Exponential with state space 

dimension*RAM-Rmax

CORL Polynomial with state space 

dimension

*Using uniform grid-based discretization

 Result: significantly less experience needed to 

perform well



Experimental Motivation

• Examine if dynamics model is sufficient to 

enable good performance in a real world task



Navigation over Varying Terrain



Movie

QuickTime™ and a
H.264/AVC decompressor

are needed to see this picture.



Generalization  Fast Learning

*Averaged over 3 runs



Computational Cost

Compact 

representation is 

beneficial Compact 

representation 

keeps 

computational 

cost flat

*Averaged over 3 runs

(m
s
)



Open Issues

• Faster continuous-state MDP planning

• Experimental results on other domains

• Consider gap between theory and experiment



CORL Summary

• RL algorithm that brings idea of types to 
continuous-valued representation

• Enables faster learning
– Amount of experience needed scales polynomially

with dimension of state space (instead of 
exponentially)

• Bound includes approximate learning error

• Robot experiment shows dynamics model 
approximation is adequate for good 
performance


