

CORL: A Continuous-state **Offset-dynamics Reinforcement Learner** Emma Brunskill, Bethany R. Leffler, Lihong Li, Michael L. Littman and Nicholas Roy Massachusetts Institute of Technology Rutgers University **July 2008**

Motivation

- Solve large reinforcement learning (RL) problems
- Leverage world structure for faster learning

Contributions

- RL algorithm for typed continuous domains with noisy offset dynamics
- Prove amount of experience needed scales polynomially with state space dimension
- Explicitly consider error due to approximate planning
- Robot experiment shows dynamics model
 approximation adequate for real world learning

Goal: Maximize expected sum of future rewards

World Representation

(12.3752, 13.8763)

Grid Cell 17 or At(*Robot,Kitchen*)

Dynamics Representation

Generalization

All states same Strehl & Littman

> All types different, discrete states

Leffler et al.

All states different Kearns & Singh

Representational Power

Dynamics Representation

Generalization

Representational Power

CORL Dynamics

- Continuous-valued states S
- Finite set of types M
- Known function *Type*: $S \rightarrow M$
- Noisy offset typed dynamics

CORL Offset-Typed Dynamics

(Dudek et al.'s AQUA robot http://www.aquarobot.net:8080/AQUA)/; http://maps.google.com

Model-based RL

Think hard: estimate models & plan

Balancing Exploration with Exploitation

Probably Approximately Correct (PAC): learn quickly but do not require optimality during learning

PAC RL Approaches

- Discrete states & actions: E³ (Kearns and Singh 1998), R-max (Brafman & Tenneholtz 2002)
- *Discrete typed offset*: RAM-Rmax (Leffler et al. 2007)
- Continuous linear dynamics with known variance: (Strehl & Littman 2008)
- Continuous typed offset with unknown variance: CORL

R-max Algorithm: Initialize

Reward

Known/ Unknown

	S1	S2	S3	S4	
	U	U	U	U	
→	U	U	U	U	
Ļ	U	U	U	U	
↓	U	U	U	U	

	S1	S2	S3	S4	
	R_{max}	R_{max}	R_{max}	R_{max}	
1	R_{max}	R_{max}	R_{max}	R_{max}	
↓	R _{max}	R _{max}	R _{max}	R _{max}	
ł	R_{max}	R_{max}	R_{max}	R_{max}	

Transition Counts

	S1	S2	S3	S4	
↑	0	0	0	0	
1	0	0	0	0	
↓	0	0	0	0	
ł	0	0	0	0	

Create "known" MDP

R-max: Solve & Act

- Solve "known" MDP
- Take best action

R-max Algorithm: Update

Reward

Known/ Unknown

	S2	S2	S3	S4	
	U	U	U	U	
-	U	U	U	U	
Ļ	U	U	U	U	
-	U	U	U	U	

	S2	S2	S3	S4	
1	R_{max}	R_{max}	R_{max}	R_{max}	
1	R_{max}	R_{max}	R_{max}	R_{max}	
↓	R _{max}	R _{max}	R _{max}	R _{max}	
ł	R _{max}	R _{max}	R _{max}	R _{max}	

Transition Counts

	S2	S2	S 3	S4	
	0	0	0	0	
1	0	0	1	0	
↓	0	0	0	0	
ł	0	0	0	0	

Increment counts for state-action tuple

R-max Algorithm: Update Cont.

Reward

Known/ Unknown

	S2	S2	S 3	S4	
1	U	U	U	U	
→	U	U	Κ	U	
Ļ	U	U	U	U	
-	U	U	U	U	

	S2	S2	S 3	S4	
	R _{max}	R_{max}	R _{max}	R_{max}	
→	R _{max}	R_{max}	R	R_{max}	
Ļ	R _{max}	R_{max}	R _{max}	R _{max}	
+	R _{max}	R _{max}	R _{max}	R _{max}	

Transition Counts

	S2	S2	S 3	S4	
	3	3	4	3	
1	2	4	5	0	
↓	4	0	4	4	
ł	2	2	4	1	

If counts for (s,a) > N, use estimated models for (s,a) when planning

R-max Algorithm

Solve known MDP

CORL: Initialization

Reward

Transition Counts

Types

CORL Algorithm: Solve

- No exact planner for general continuous-state MDPs
- Use Fitted Value Iteration to approximately solve

CORL Algorithm: Solve

- No exact planner for general continuous-state MDPs
- Use Fitted Value Iteration to approximately solve
 - Perform Bellman backups at a finite set of states
 - Approximate value at other states using function approximation
- Consider this error in sample complexity bounds

CORL Algorithm: Act

Take best action given approximate solution

CORL: Update Counts

Transition Counts

Reward

Types

Increment counts for type-action tuple

CORL: Label Known Tuples

Reward

Known/ Unknown

Transition Counts

 $\begin{array}{c} \black \$

Label state-type as known when counts exceed threshold

CORL: Estimate Dynamics

For known type-action tuples estimate dynamics parameters from experience

$$\tilde{\beta}_{at} = \frac{\sum_{i=1}^{counts_{at}} (s'_i - s_i)}{counts_{at}}$$

$$\tilde{\Sigma}_{at} = \frac{\sum_{i=1}^{counts_{at}} (s'_i - s_i - \tilde{\beta}_{at})(s'_i - s_i - \tilde{\beta}_{at})^T}{counts_{at}}$$

Complexity

Think hard: estimate models & plan

Theoretical Results

- Estimate offset dynamics parameters
- For diagonal covariance, approximate model can be used to get near-optimal behavior
- Bound error due to approximate planning (Chow and Tsitsiklis 1991)
- Combine ideas to bound sample complexity

CORL Theorem

Assuming

 a continuous-state noisy offset dynamics MDP with diagonal covariances

Given

- δ and ε
- |M| types
- Variance along each dimension of all the dynamics models bounded by $\left[\sigma_{\min}^2, B_{\sigma}^2\right]$
- Each offset parameter bounded by $|\beta_i| < B_{\beta}$

CORL Theorem

Then on all but N_{total} timesteps CORL will follow a 4 ϵ -optimal policy with probability at least 1-2 δ , where

$$N_{total} = poly\left(N_{dim}, |A|, |M|, \frac{1}{\varepsilon}, \frac{1}{\delta}, \frac{1}{1-\gamma}, \frac{1}{\sigma_{\min}}, B_{\beta}, B_{\sigma}\right)$$

Sample Complexity Results

R-max	$ ilde{O}(A S ^2)$
RAM-Rmax	$ ilde{O}(A M S)$
CORL	$\tilde{O}(A M S_{dim}^2)$

- |S| = size of the state space,
- |A| = number of actions,
- |M| = number of types,
- N_{dim} = dimensionality of the state space

Sample Complexity Summary

R-max	
RAM-Rmax	<i>Exponential</i> with state space dimension*
CORL	Polynomial with state space dimension

*Using uniform grid-based discretization

 \rightarrow Result: significantly less experience needed to perform well

Experimental Motivation

• Examine if dynamics model is sufficient to enable good performance in a real world task

Navigation over Varying Terrain

Movie

QuickTime™ and a H.264/AVC decompressor are needed to see this picture.

*Averaged over 3 runs

Computational Cost

Average Per Episode Computation Time

Computation Time (ms)

Open Issues

- Faster continuous-state MDP planning
- Experimental results on other domains
- Consider gap between theory and experiment

CORL Summary

- RL algorithm that brings idea of types to continuous-valued representation
- Enables faster learning
 - Amount of experience needed scales *polynomially* with dimension of state space (instead of *exponentially*)
- Bound includes approximate learning error
- Robot experiment shows dynamics model approximation is adequate for good performance

