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Factored Markov Decision Processes

• A factored Markov decision 
process (MDP) is a 4-tuple M 
= (X, A, P, R):

– X is a set of state variables

– A is a set of actions

– P is a transition function
represented by a dynamic 
Bayesian network (DBN)

– R is a reward model:
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Linear Value Function Approximations

• The quality of a policy is measured by the infinite horizon 
discounted reward:

• The optimal value function V* is a fixed point of the Bellman 
equation:

• A compact representation of an MDP may not guarantee a 
compact form of the optimal value function V*

• Approximation of V* by a linear combination of basis functions 
[Bellman et al. 1963, Van Roy 1998]:

  












tt

t

t

π πγ xx ,RE
0

         xxx xx
 



 VE,RmaxV ,| aP
a

γa

   
i

iiw xx
w fV Local feature functions



6 Intel Research6

Approximate Linear Programming

• Optimization of the linear value function approximation can 
restated as an approximate linear program (ALP):

• The linear value function approximation combined with the 
structure of factored MDPs induces a structure in ALP:
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State-of-the-Art Methods for ALP

• Exact methods

– Rewrite constraint space compactly (Guestrin et al. 2001)

– Cutting plane method (Schuurmans & Patrascu 2002):

– Problem: Exponential in the treewidth of the dependency graph 
that represents the constraint space in ALP

• Approximate methods

– Monte Carlo constraint sampling (de Farias & Van Roy 2004)

– Markov Chain Monte Carlo (MCMC) constraint sampling (Kveton & 
Hauskrecht 2005)

– Problem: Stochastic nature and slow convergence in practice
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Partitioned ALP Approximations

• Decompose the ALP constraint space (with a large treewidth) 
into a set of constraint subspaces (with small treewidths)

Constraint subspace #2Constraint subspace #1 Constraint subspace #3

Treewidth 2

Treewidth 1

Constraint space of 
an ALP represented 

by a cost network
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Partitioned ALP Approximations

• Partitioned ALP (PALP) formulation with K constraint spaces is 
given by a linear program:
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Partitioned ALP Approximations

• Partitioned ALP (PALP) formulation with K constraint spaces is 
given by a linear program:

• When the decomposition D is convex, a solution to the PALP 
formulation is feasible in the corresponding ALP formulation

• The PALP formulation is feasible if the set of basis functions 
includes a constant basis function f0(x)  1
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Interpreting PALP Approximations

• PALP can be viewed as solving K MDPs with overlapping state 
and action spaces, and shared value functions:
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Partitioning Matrix D

• To achieve high quality and tractable approximations, the K 
constraint spaces should preserve critical dependencies in the 
MDP and have a small treewidth

• How to generate the best PALP approximation within a given 
complexity limit is an open question

• In the experimental section, we build a constraint space for 
every node in the ALP cost network and its neighbors

Constraint subspace #2Constraint subspace #1 Constraint subspace #3
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Solving PALP Approximations

• PALP formulations can be solved by exact methods for solving 
ALP formulations

• In the experimental section, we use the cutting plane method
for solving linear programs
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Theoretical Analysis

• PALP value functions are upper bounds on the optimal value 
function V*

• PALP minimizes the L1-norm error between the optimal value 
function V* and our value function approximation

• The quality of PALP solutions can be bounded as follows:

• PALP generates a close approximation to the optimal value 
function V* if V* lies in the span of basis functions and the 
penalty δ for partitioning the ALP constraint space is small
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Experiments

• Demonstrate the quality and scale-up potential of partitioned 
ALP approximations

• Comparison to exact and Monte Carlo ALP approximations on 
three topologies of the network administration problem

Ring-of-rings topology Grid topologyRing topology

Treewidth of the grid topology grows with the number of computers
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• Evaluation by the quality of policies (relatively to the reward 
of ALP policies) and computation time

Experimental Results
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• The quality of PALP policies is almost as high as the quality of 
ALP policies

Experimental Results

6 12 18 24 30

0.7

0.8

0.9

1

Ring topology

R
e

w
a

rd
 r

e
la

ti
v
e

to
 A

L
P

 p
o

li
c
ie

s

6 12 18 24 30

0.7

0.8

0.9

1

Ring-of-rings topology

2x2 4x4 6x6 8x8 10x10

0.7

0.8

0.9

1

Grid topology

6 12 18 24 30
0

10

20

30

Problem size n

C
o

m
p

u
ta

ti
o

n
 t
im

e
 [
s
]

6 12 18 24 30
0

10

20

30

Problem size n

2x2 4x4 6x6 8x8 10x10
0

10

20

30

Problem size nxn

MC ALP

PALP

ALP



20 Intel Research20

• Magnitudes of ALP and PALP weights are different but the 
weights exhibit similar trends

Experimental Results
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• PALP policies can be computed significantly faster than ALP 
policies

Experimental Results
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• PALP policies are superior to ALP policies, which are obtained 
by Monte Carlo constraint sampling

Experimental Results
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• PALP policies are superior to ALP policies, which are obtained 
by Monte Carlo constraint sampling

Experimental Results

6 12 18 24 30

0.7

0.8

0.9

1

Ring topology

R
e

w
a

rd
 r

e
la

ti
v
e

to
 A

L
P

 p
o

li
c
ie

s

6 12 18 24 30

0.7

0.8

0.9

1

Ring-of-rings topology

2x2 4x4 6x6 8x8 10x10

0.7

0.8

0.9

1

Grid topology

6 12 18 24 30
0

10

20

30

Problem size n

C
o

m
p

u
ta

ti
o

n
 t
im

e
 [
s
]

6 12 18 24 30
0

10

20

30

Problem size n

2x2 4x4 6x6 8x8 10x10
0

10

20

30

Problem size nxn

MC ALP

PALP

ALP



24 Intel Research24

Overview

• Introduction

– Factored Markov decision processes

– Approximate linear programming

– Solving ALP formulations

• Partitioned linear programming approximations

– Formulation, theory, and insights

• Experiments

• Conclusions and future work



25 Intel Research25

Conclusions and Future Work

• Conclusions

– A novel approach to ALP that allows for satisfying ALP constraints 
without an exponential dependence on their treewidth

– Natural tradeoff between the quality and computation time of ALP 
solutions

– Bounds on the quality of learned policies

– Evaluation on a challenging synthetic problem

• Future work

– Learning of a good partitioning matrix D and the problem of exact 
inference in Bayesian networks with a large treewidth

– Evaluate PALP on a large-scale real-world planning problem


