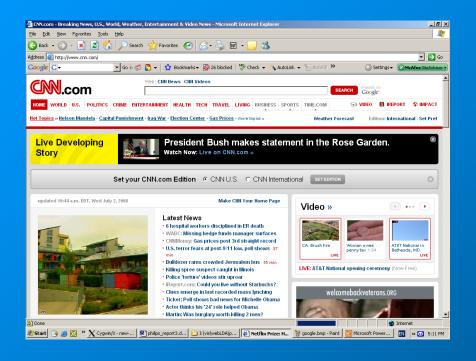
Latent Topic Models for Hypertext

Amit Gruber¹
Michal Rosen-Zvi²
Yair Weiss¹

¹The Hebrew University of Jerusalem ²IBM Research Labs, Haifa

Introduction

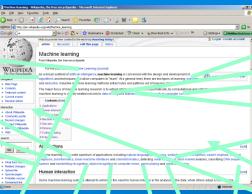


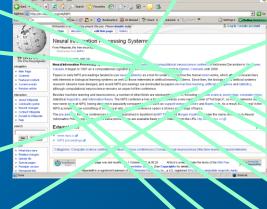
0.3 sports
0.4 crime
0.3 politics

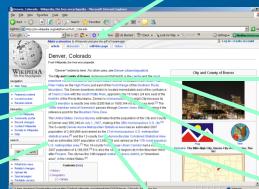
 In this work we focus on hypertext documents, i.e. documents with links

Hypertext Documents

Hypertext Documents







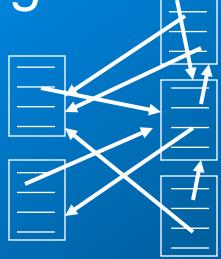
Introduction

- Hypertext is everywhere!
 - web pages, refs. in scientific publications
- Connectivity is important
 - PageRank

Topology of the WWW is complicated

Problem Setting

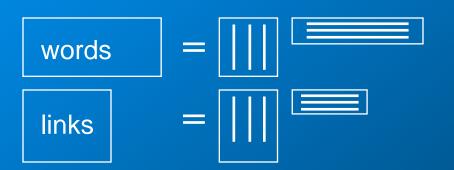
Input: documents and links



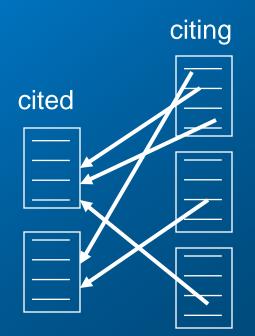
- Estimate:
 - Document topic mixture
 - Pr(word | topic)
 - Document importance
- Unsupervised

Previous Work: Topic Models for Hypertext

- Cohn and Hofmann, '01.
- Erosheva et al. '04.
 - Links are modeled similar to words
 - Links are not associated with words



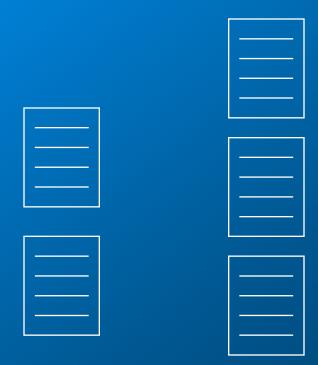
- Dietz et al. '07.
- Nallapati and Cohen, '08.
 - Distinguish between citing and cited docs



The Latent Topic Hypertext Model (LTHM)

LTHM: Generative Model

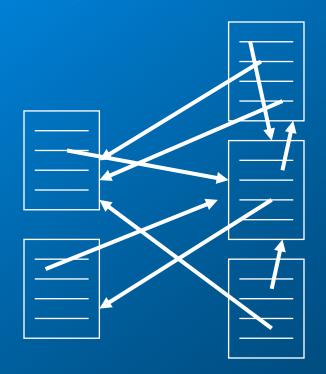
1. Words are created (by LDA)



LTHM: Generative Model

1. Words are created (by LDA)

2. Links are created (our contribution)



LTHM: Modeling Links

 Allows for arbitrary topology of the citation graph (including self links)

A link points from a word to a document

LTHM: Link Generation

- Depends on:
 - The topic of the anchor word
 - The topic mixture of the target document
 - The importance of the target document

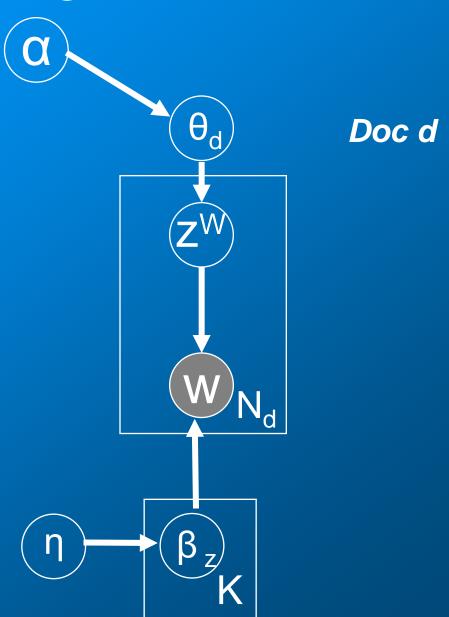
$$Pr(link = d | topic = z) = \lambda_d \theta_d(z)$$

importance of d

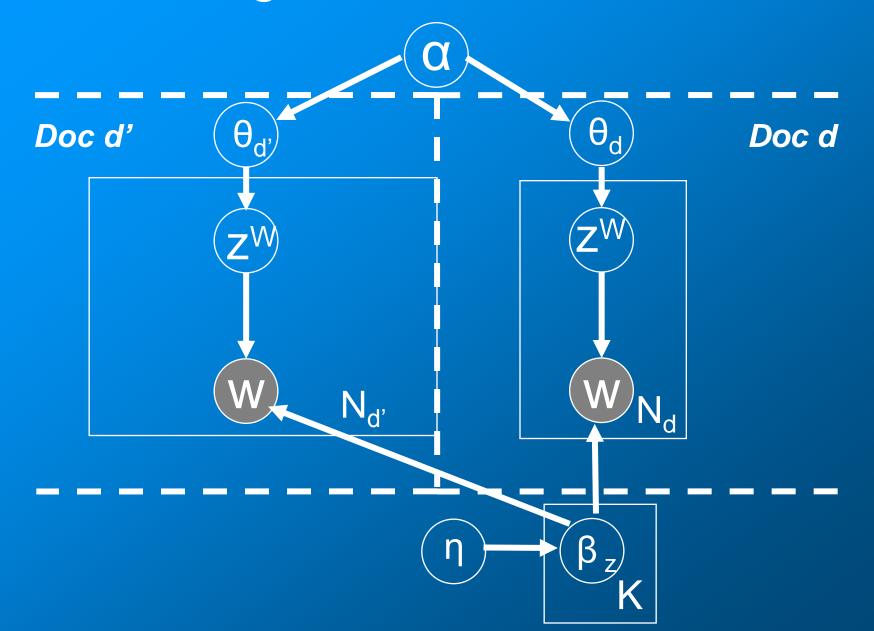
prevalence of z in d

Generating a single document d

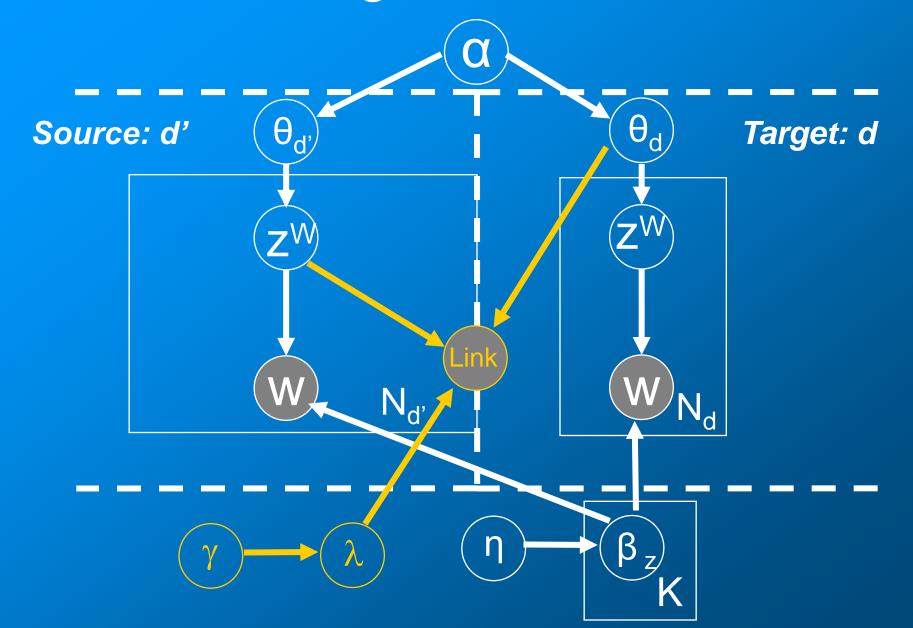
d is generated by Latent Dirichlet Allocation



Generating two documents d' and d



Generating Links from d' to d



Properties of the Model

- D additional parameters (λ) for links vs.
 DxK parameters in previous models
- The existence (or non-existence) of a link is an observation
- A link shares the same topic with the word
- Link affects topic estimation in both the source and target documents

Approximate Learning

- Exact inference is intractable in hierarchical models such as LDA
- Approximate inference in LTHM is even more challenging as non-links are also observations
- Using symmetries, we derived an O(K*corpus size) EM algorithm

Experiments

WebKB dataset
 8282 documents
 12911 links

Wikipedia

A new data set, collected by crawling from the NIPS Wikipedia page

105 documents

790 links

Topic 1

0.067 neural network 0.047 networks 0.039 learning 0.027 artificial 0.017 0.015 data 0.014 models function 0.014

Artificial neural network

0.004

Neural network 0.003

Topic 2

recognition 0.058
speech 0.033
language 0.015
pattern 0.012
handwriting 0.011
evaluation 0.010
robots 0.010
systems 0.009

Speech recognition

Pattern recognition

Topic 3

0.051 vancouver 0.043 denver 0.041 city retrieved 0.024 colorado 0.011 0.009 area population 0.009 canada 0.008

Denver, Colorado

Vancouver

0.0002

Topic 4

brain 0.047 cognitive 0.026 science 0.016 0.011 press 0.010 neurons 0.010 mind systems 0.010 0.010 human

Cognitive science 0.003

Neuroscience

0.002

Journal of Machine Learning Research

LDA

Topic prob	Top words
0.1504	search, article, navigation
0.0798	press, university, new
0.0652	learning, machine, algorithms
0.0594	fixes, skins, import
0.0533	model, regression, reasoning

LTHM

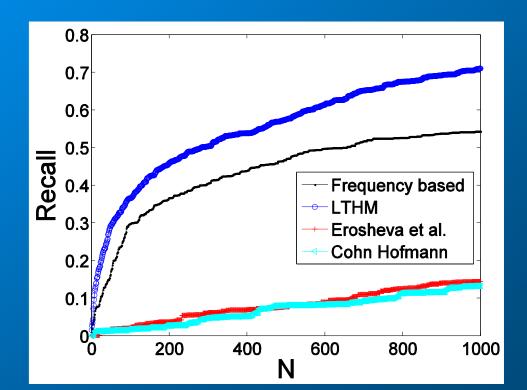
Topic prob	Top words
0.4136	learning, machine, engineering
0.0943	card, conference, credit

Experiments – link prediction on test set

- Wikipedia corpus: 105 documents with 790 links
- 20 hidden aspects

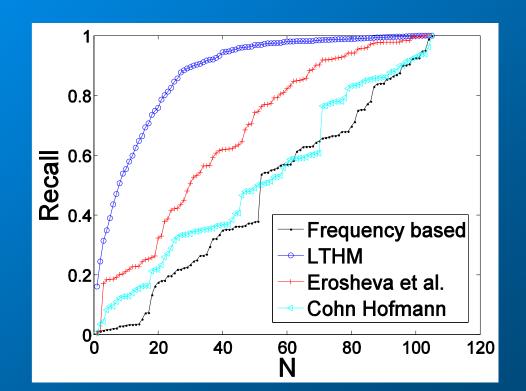
Test set: 11 documents, outgoing links are

invisible



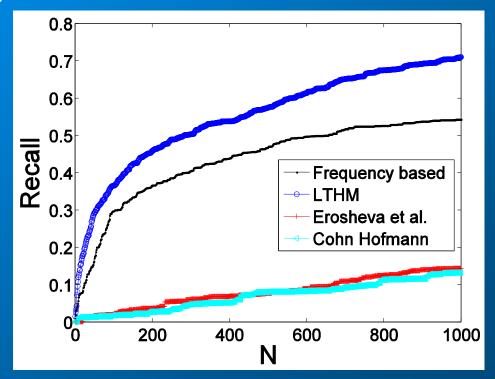
Experiments – link prediction on train set

- Wikipedia corpus: 105 documents with 790 links
- 20 hidden aspects



Experiments – link prediction

- Webkb corpus: 8282 documents with 12911 links
- 20 hidden aspects
- Test set: 10%



Summary

- Explicit modeling of link generation in an LDA like model
- Efficient approximate inference algorithm
- Performs better than previous topic models in link recommendation

 Code and data available online at http://www.cs.huji.ac.il/~amitg/lthm.html