Instance Based Clustering of Semantic Web Resources

Gunnar Aastrand Grimnes

Peter Edwards & Alun Preece

DFKI GmbH, Kaiserslautern School of Natural & Computing Sciences, University of Aberdeen School of Computing Science, Cardiff University

Introduction

- We want to apply machine learning techniques to semantic web data
- In this work we focus on the *clustering* of Semantic Web resources for example for:
 - Visualisation, information-mining, user-recommendations, etc.

Machine Learning from RDF

- Most people learn to enable the semantic web – we assume it already exists and want to learn more from the semantic data
- Representation is king finding the "correct" mapping of the RDF Graph to the input format for ML is crucial

Data-sets

- We test on three different data-sets:
 - FOAF Crawl 3755 persons
 - NEPOMUK PIMO 1809 instances
 - Citeseer dump 4220 papers

Datasets - PIMO

Datasets - Citeseer

```
citeseer:shannon48 a :article;
:journal "Bell System Technical Journal";
:month "July, October";
:title "A Mathematical Theory of Communication";
:volume "27";
:year "1948".
```

Extracting Instances

- We are interested in *instance* based clustering...
- ... but Semantic Web data is one big graph
- What part of the graph is relevant to a resource?
- Relevant also for UI creation, SPARQL
 Describe + +

Instance Extraction Three approaches

- Immediate properties
- Concise Bounded Description
- Depth Limited Crawling

Extracted Instance Graphs

Distance Measure

- Given some RDF "instances" (i.e. resource + relevant graph) how can we compute distances between them?
- Tricky to transform RDF into some N-space for Euclidian distance
- Again three approaches:
 - feature-vector, graph-based & ontological

Feature Vector Distance

- How can we extract a feature vector from an RDF graph?
- Naive solution: make a feature for each property
 - Does not handle deeper relations in graph
- We do slightly better create features for all paths in the data
 - Limit to top X paths occurring in the data

Feature Vector Example

[name, worksFor, knows,
 worksFor→businessArea,
 worksFor→locatedIn,
 knows→name,
 knows→marriedTo,
 worksFor→locatedIn→locatedIn,
 knows→marriedTo→name]

```
[ {"bob"}, { ex:TheCompany },
{ :node15 }, { business:Telecoms },
{ cities:London }, {"Jane"},
{ :node16 }, { countries:UK },
{"Roger"} ]
```

Feature Vector Distance

Distance for features FV and vectors X & Y:

$$simFV(X, Y, FV) = \frac{1}{|FV|} \sum_{f \in FV} \frac{2 * |X_f \cap Y_f|}{|X_f| + |Y_f|}$$

Graph Based Distance

- Combination of level of overlap of nodes and edges
- Designed for conceptual graphs, but works fine with RDF graphs

Ontological Distance

- Made for formal ontologies, minor modifications needed for noisy semantic web data:
 - Multiple super-classes / types
 - Well defined range/domains
 - Distinction between object/literal properties
- Combination of taxonomy similarity, attribute similarity & relational similarity
- Works directly on RDF graph

Experiments

- We used a very simple HAC algorithm
- Supervised evaluation for Citeseer and PIMO data:
 - F-measure, Heß measures, entropy and purity
- Unsupervised evaluation for FOAF & PIMO:
 - Zamir's Quality Metric

Results

- Very uneven cluster sizes all solutions had several singleton clusters
 - A more sophisticated clustering algorithm may be in order
 - Feature-vector based approach especially bad – largest cluster contained 85% of all instances

Supervised Results 1

Supervised Results II

Unsupervised Results

Conclusions

- Ultimately "it depends":)
 - On the features of the data-set
 - Mainly on the (here non-existent) application!
- Ontological distance measure is quite slow to compute – and does not perform significantly better – but it may for data with better ontologies

Future Work

- Hybrid instance extraction method
 - combine node-type and depth limit ...
- ... or a frequency based instance extraction method
- Find a specific application!
 - Which hopefully could also give us more natural data

Thanks for you attention!

Questions?