

image ® Rolls-Royce

Hybrid Search: Effectively Combining Keywords and Semantic Search

Ravish Bhagdev, Sam Chapman, <u>Fabio Ciravegna</u>, Vitaveska Lanfranchi

web Intelligence technology lab, nlp group, department of computer science, university of sheffield

Daniela Petrelli

department of Information studies, university of sheffield

Outline of Talk

- Aim of paper
 - Search for what and in what conditions?
- Hybrid Search as a way to overcome limitation of classic semantic search
- Implementing Hybrid Search into K-Se
- Experimental Evaluation in vitro and ir
- Conclusion and future work

3 mins+3 slides

7min+9slides

4 mins+5slides

8 mins+15 slides

3 mins+2 slides

Viravegna. University of Sheffiel

Aim of the paper

- We propose a search method
 - Designed for the Semantic Web
 - Seen as a collection of both documents and metadata,
 - Designed to achieve two tasks:
 - Document retrieval: searching for documents using concepts or keywords of interest
 - Knowledge retrieval: retrieving facts from a knowledge base (i.e. triples)

Viravegna. University of Sheffiel

Metadata and User Needs

- Differently from [1, 2, 3, 4, 9],
 - We expect metadata to cover only partially the user information needs
 - Reasons:
 - limitations in the ontology wrt user needs
 - limitations in the annotation capabilities
 - i.e. limitations in IE capabilities
 - metadata unavailable for a specific document

Siravegna. University of Sheffield

Pure Semantic Search (OS)

- Semantic search as metadata-based search defined according to an ontology,
 - Annotations are unambiguous
 - OS Does not suffer from ambiguity and synonym issues of keyword-based systems (KS)
- Issue:
 - OS can fail to encompass user information needs
 - When metadata does not completely cover user needs

Hybrid Search

- We propose a model of searching combining
 - the flexibility of keyword-based retrieval
 - querying and reasoning capabilities of semantic search
- HS is formally defined as:
 - the application of semantic (metadata-based) search for the parts of the user queries
 - where metadata is available
 - the application of keyword-based search for the parts not covered by metadata.
 - But also it must leave freedom to users to chose among the two paradigms!
 - As we will see users make a creative use of it

Any boolean combination of three t conditions differently from other approaches (e.g. [9]), in HS conditions on metadata and keywords coexist.

- pure semantic:
 - via unique identification of objects/relations
 - e.g. via URIs or unique identifiers
- keyword-based
 - matching on the whole document
- keyword-in-context
 - matching keywords only within portion of documents semantically annotated with a specific type or instance

Any boolean combination of three t conditions differently from other approaches (e.g. [9]), in HS conditions on metadata and keywords coexist.

- pure semantic:
 - via unique identification of objects/relations
 - e.g. via URIs or unique identifiers
- keyword-based
 - matching on the whole document
- keyword-in-context
 - e.g. it enables searching for the string "fuel" but only in the context of all the text portions annotated with the concept affected-engine-part [14]

Oiravegna, University of Sheffield

Example of Hybrid Query

 $\forall x,y,z /$

(discoloration y) & (located-on y x) & (component x)

Querying Metadata

& (provenance-text-contains x "blade")

Keyword in Context Query

& (contains z "trailing edge") & (document z) & (provenance x z)

Keyword-based Query

olo Ciravegna. University of Sheffield

Implementing HS: Indexing

- Documents are indexed using a standard keyword-based engine such as SolR
- Facts (e.g. extracted by an IE system) are stored in a Knowledge Base
 - e.g. a triple store like Sesame2 in the form of RDF triples.
- Provenance of facts recorded
 - E.g. As triples connecting
 - the facts' URIs and those of the document of origin
 - the facts' URIs and the original strings used in the documents

Oiravegna, University of Sheffielo

Implementing HS: Retrieval

- Query is parsed and the different components (keywords, keywords-in-context and metadata) identified
 - keyword matches → traditional information retrieval system
 - metadata searches
 - Translated into a query language like SPARQL
 - Sent to a triple store
 - keywords-in-context queries
 - matched with provenance of annotations in documents
 - E.g. Using SPARQL and a triple store
- Finally, results are merged, ranked and displayed

Ciravegna. University of Sheffield

Result Merging

- Merging keyword and semantic results is not straightforward
 - Keyword matching returns an <u>ordered</u> set of URIs of <u>documents</u>
 - a semantic search returns an <u>unordered</u> set of <u>assertions</u> < subj, rel, obj>
- Merging is a different task if:
 - Document Searching
 - Returns documents
 - Knowledge Searching
 - Returns triples

- Provenance of triples returns document ids for triples (URIs)
 - Document Searching:
 - Provenance URI set is intersected with URIs of documents returned by keywords
 - HybridSearchUriSet= KSDocUriSet ∩ OSDocUriSet

I won't mention ranking here

Documents
Returned by KS

Provenance Docs
For triples returned
by OS

Ciravegna. University of Sheffiel

I won't mention

Merging results

- Provenance of triples returns document ids for triples (URIs)
 - Knowledge Searching

■ Triples returned by semantic search are filtered remove those whose provenance does not point to

any of the documents returned by the keywords

```
HSTripleSet = All triples ∈ OSTripleSet
Where Provenance(triple¹) ∈ KSDocUriSet
```

Documents
Returned by KS

Provenance Docs For triples returned by OS iravegna, University of Sheffield

io Ciravegna. University of Sheffield

Expected effect of HS: Document Searching

- With respect to OS
 - Recall expected to increase
 - Use of keywords where metadata is missing enables to answer otherwise impossible queries
 - Precision may suffer because of polysemy
- With respect to KS
 - Precision and recall expected to increase
 - Ambiguity and synonymity are dealt with by semantic search when available
 - Higher recall and precision
 - As keywords are combined with metadata in the same query, the context given by the available metadata helps in disambiguating keywords as well
 - higher precision

Expected effect of HS: Knowledge Searching

- With respect to OS
 - Precision increased
 - Use of keywords where metadata is missing enables more precise queries
 - although less precise than the ideal ones

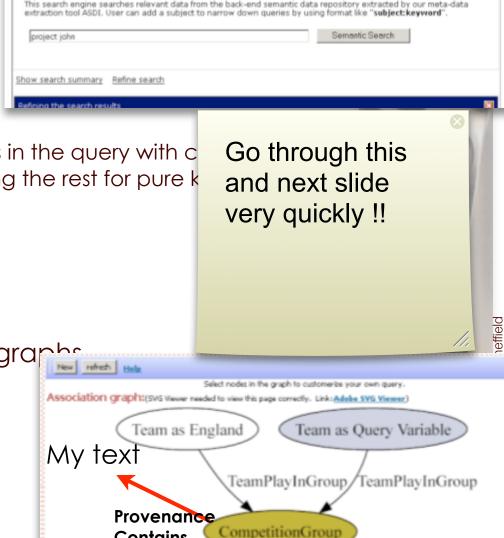
- Recall increased
 - Use of keywords where metadata is missing enables to answer otherwise impossible queries
- Precision may suffer because of polysemy
- With respect to KS
 - KS does not cover Knowledge Searching

Next slide:
We have
implemented a
version to confirm
our expectation

Implementing HS: What Search Strategy?

- Keyword-based approaches
 - Require translating all the keywords in order to perform the query
 - E.g. SemSearch
 - HS implemented by replacing keywords in the guery with c the ontology when possible while leaving the rest for pure k based searching

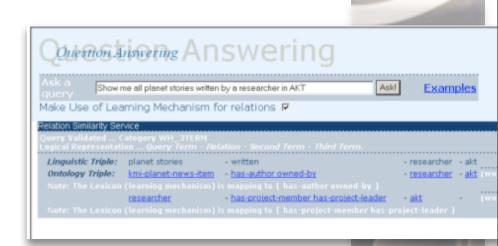
Semantic Web


ome | Knowledge Sources | Tools | Ontologies

Contains

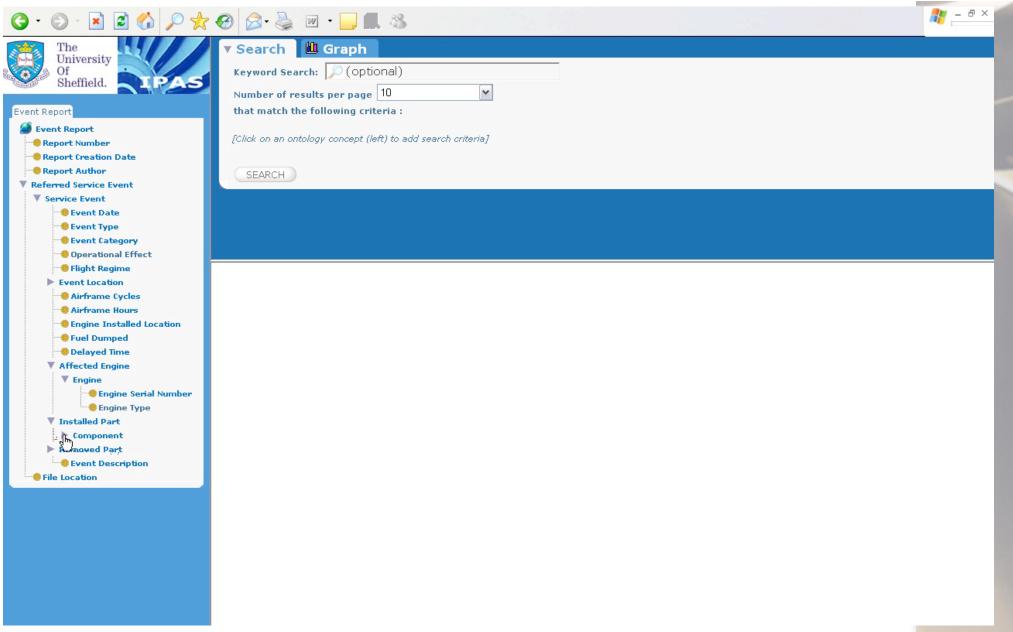
- Keywords in context rather difficult
- View-based approaches

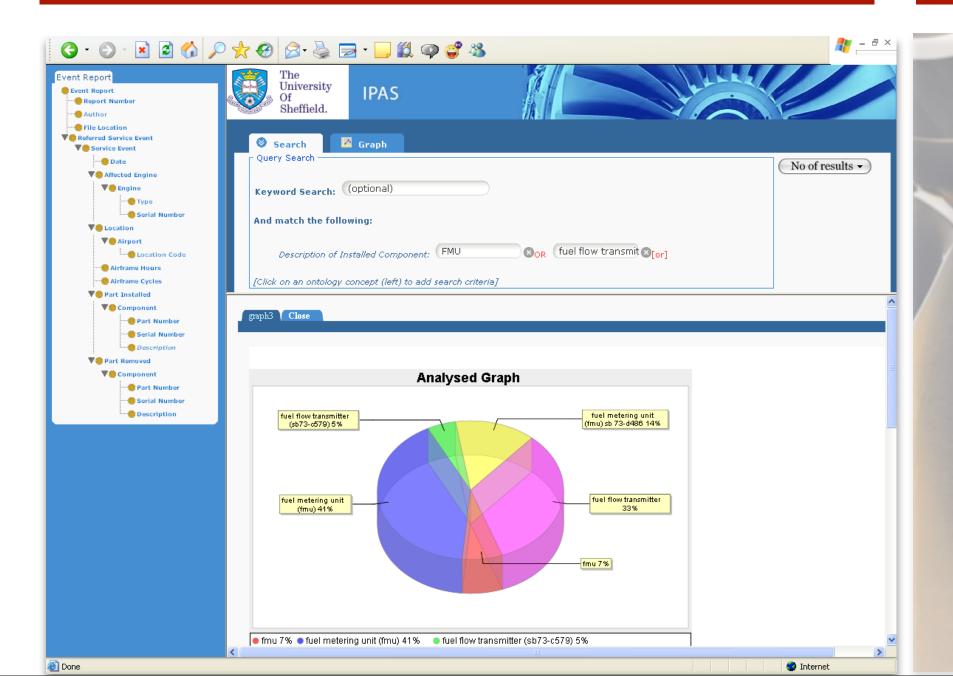
Based on querying by building visual graphs


- E.g. Falcon
- HS support by adding two arc types
 - document-contains
 - Object description contains

Search Strategy (ctd)

- A natural language approach
 - E.g. Aqua
 - HS suported by recognising expressions like
 - "and the document contains..."
 - And its description contains
- Form-based approaches
 - HS supported by introducing
 - KeywordSearch field
 - Enable keywordMatching on fields




 Form-based implementation of hybrid search initially created for Jet Engine Designers

© Fabio Ciravegna, University of Sheffield

K-Search

K-Search

iravegna. University of Sheffiel

K-Search evaluation

- We have performed 2 types of evaluations using K-Search:
 - in vitro:
 - Effectiveness of query strategy with respect to standard KS and OS
 - in vivo: testing the system with real users
 - 32 users Rolls-Royce engineers
 - Evaluation enables verifying suitability for use in a real environment

Annotating Documents

- Automatic extraction of information from event report
 - 18,000 documents analysed
 - Mainly Forms implemented in Word
- Metadata generated according to an ontology developed by Aberdeen U

 Automatic extraction of metadata and indexing of documents IE unable
to cover
all the
ontology
with
sufficient
accuracy

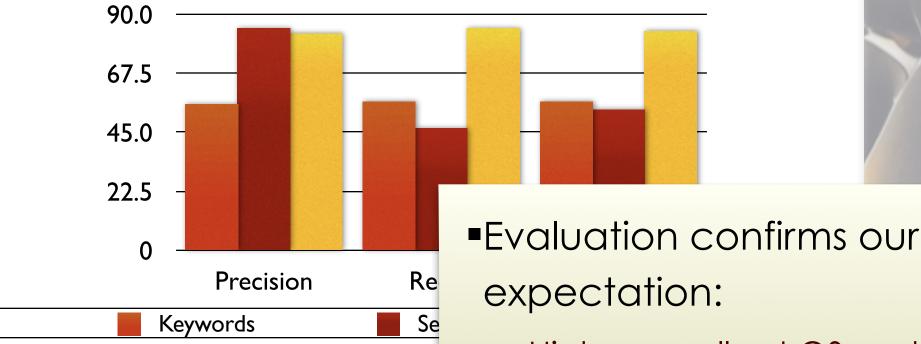
ahio Cirayegna | Iniversity of Sheffie

Applying information extraction

- AktiveMedia to annotate texts
- TRex system (Jiria et al. 2006) to train and extract
 - http://tyne.shef.ac.uk/t-rex/
- IE captures <u>all</u> the information in tables
 - 99% of the information captured (recall=99)
 - 98% of proposed information is correct (precision=98)

	POS	ACT	CORR	WRONG	MISSED	PREC	REC	F1
airport	120	120	120	0	0	100	100	100
has_airframe_cycles	104	104	104	0	0	100	100	100
has_airframe_hours	104	104	104	0	0	100	100	100
has_author	120	120	120	0	0	100	100	100
has_engine_serial_number	120	120	120	0	0	100	100	100
has_engine_type	120	120	120	0	0	100	100	100
has_event_date	120	120	120	0	0	100	100	100
has_event_report_no	356	358	356	2	0	99	100	100
has_part_description_installed	120	113	111	2	9	98	93	95
has_part_description_removed	120	133	120	13	0	90	100	95
has_part_number_installed	120	113	111	2	9	98	93	95
has_part_number_removed	120	133	119	14	1	89	99	94
TOTAL	1644	1658	1625	33	19	98	99	98

In vitro evaluation


- 21 topics of search, discussed with users, e.g.
 - "How many events were caused during maintenance in 2003?"
 - "What events were caused during maintenance in 2003 due to control units?"
 - 'Find al I the events associated with damage to acous- tic liners fol lowing bird strike"

Queries:

- "what events caused during maintenance in 2003 were due to control units?"
- Translated into a set of queries in KS, OS and HS

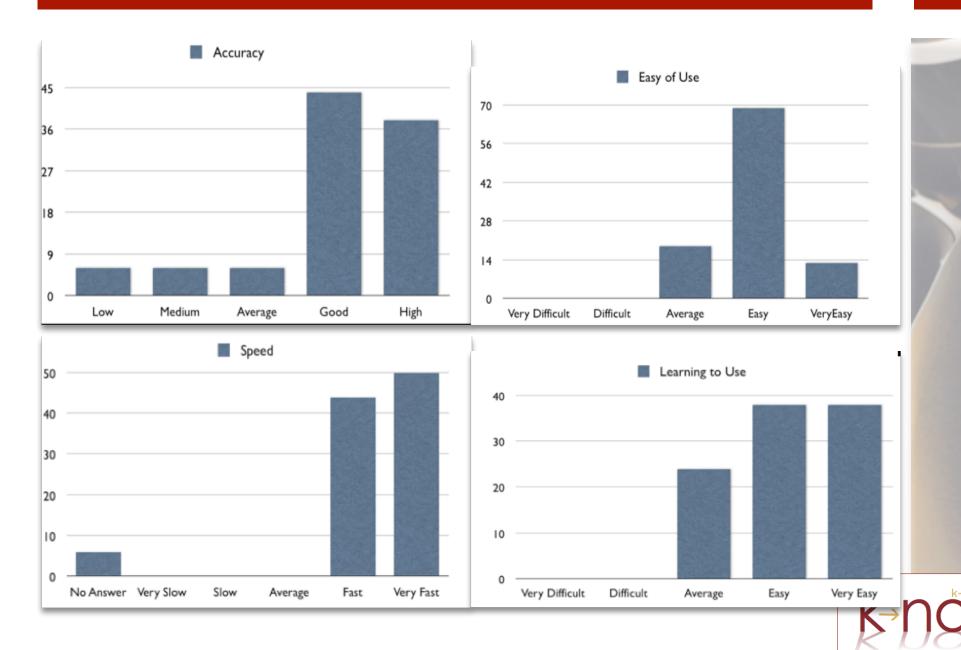
K-Search on Event Reports

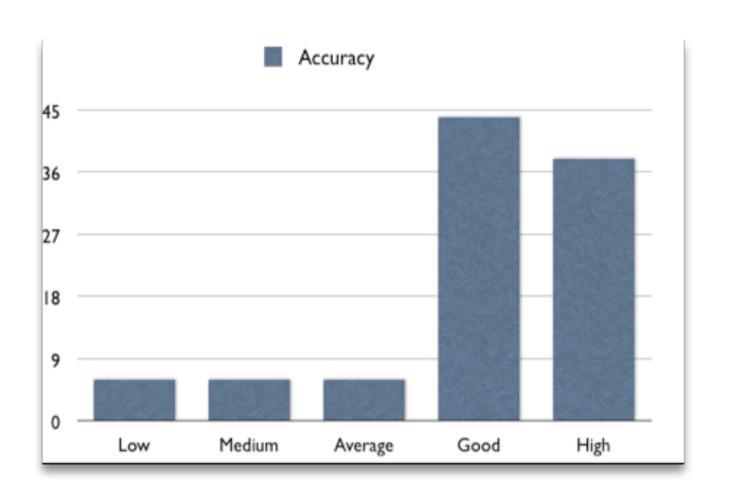
 Accuracy in the first 20 hits on a sample of 400 docs

- Similar results for 50 hits
- Higher recall wrt OS and KS
- Higher precision wrt KS
- Slightly lower precision wrt OS

Ciravegna, University of Sheffiel

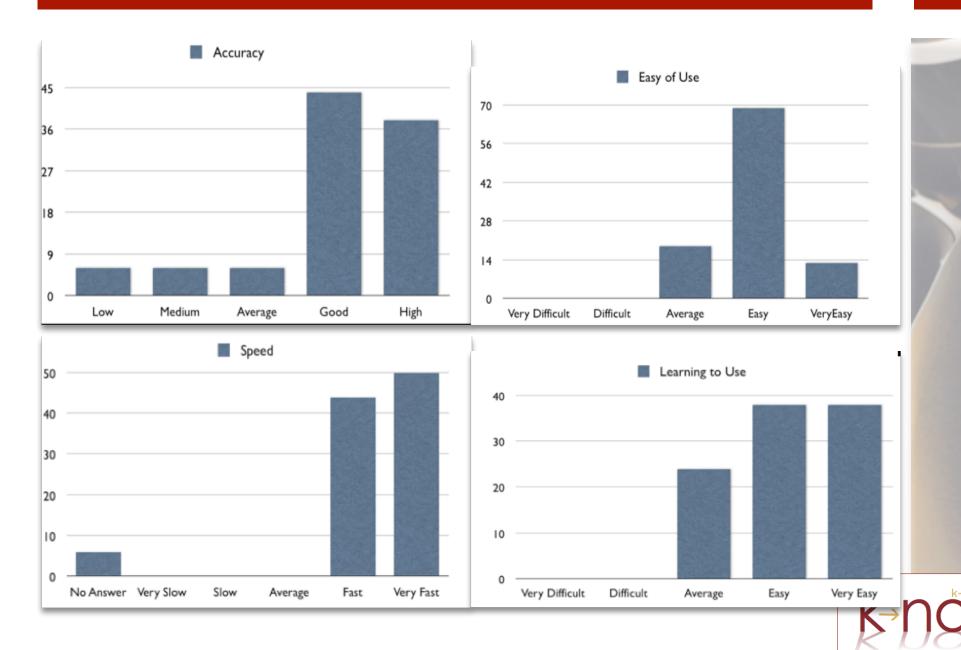
Final User Evaluation

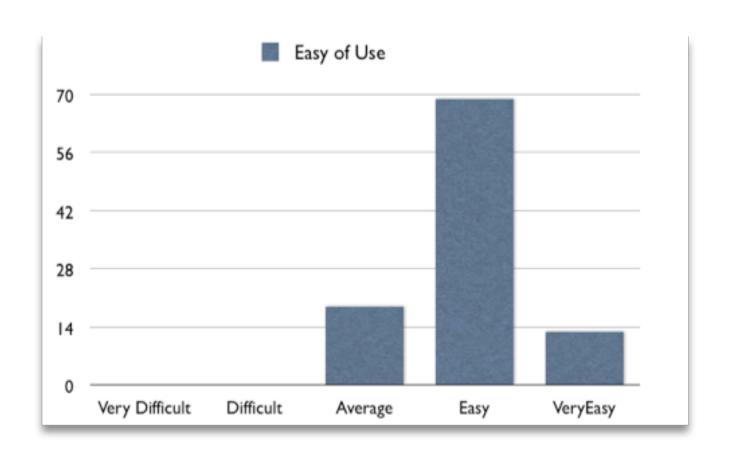

- Goal: verifying suitability for use in a real environment
 - 32 users Rolls-Royce engineers from different parts of the company
 - 90 minutes of test
 - Short introduction
 - 3 monitored tasks
 - One given (including solution)
 - One given (no solution)
 - One free task
 - Availability of system on intranet for the following period
- Evaluation: video recording, interview + log analysis

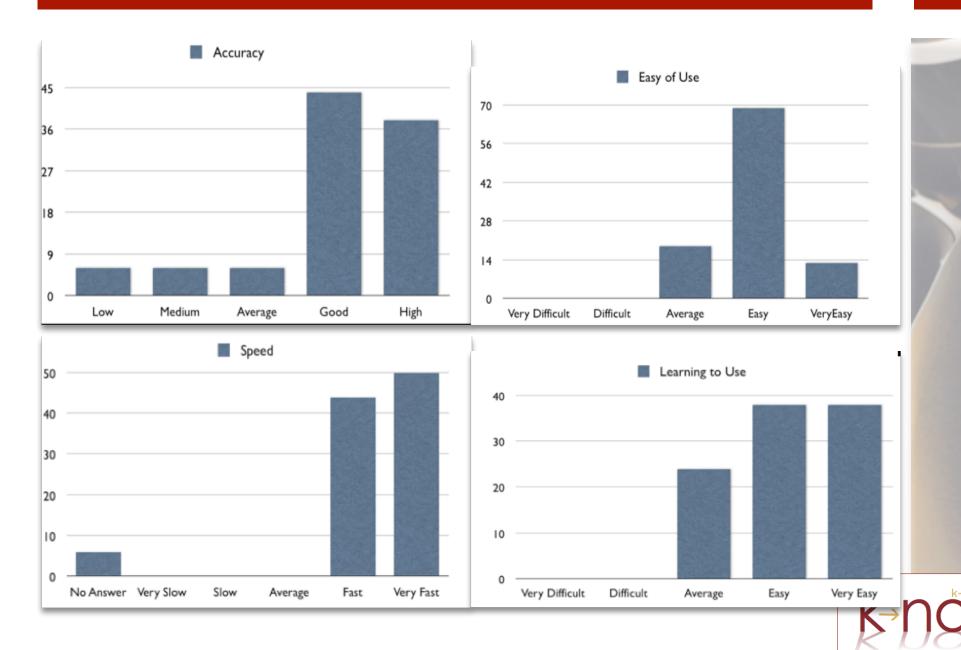

Stravegna, University of Sheffield

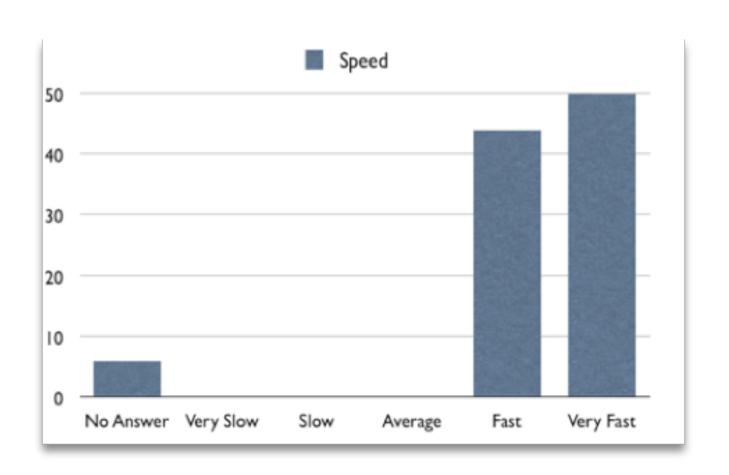
Evaluation Questions

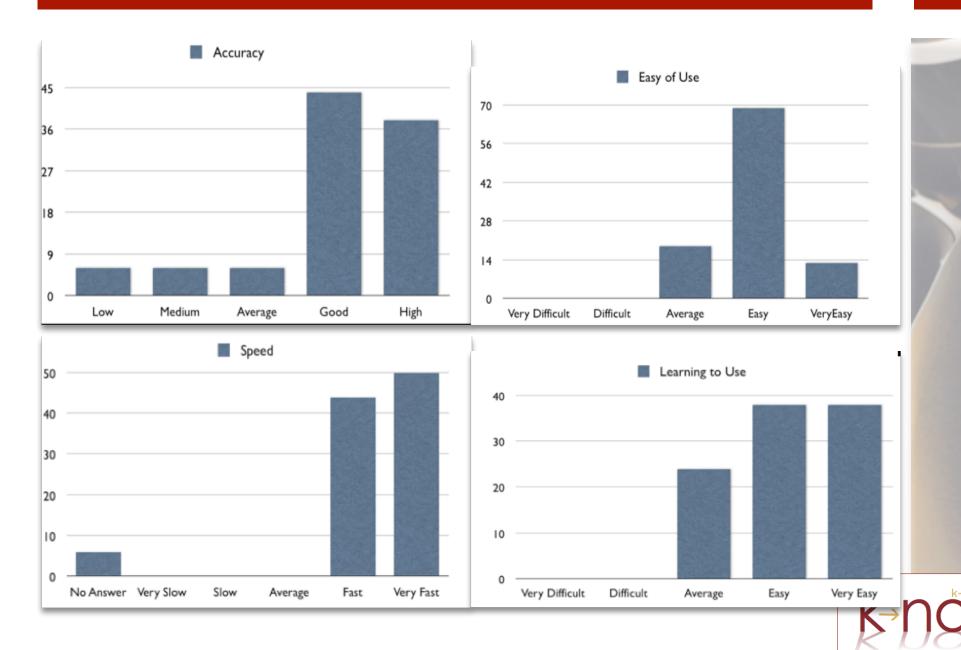
- Do user understand the hybrid paradigm?
- Are they able to search using HS?
- Do they actually use HS when confronted with a real searching task?
- Would the users be willing to use the system for their everyday work?

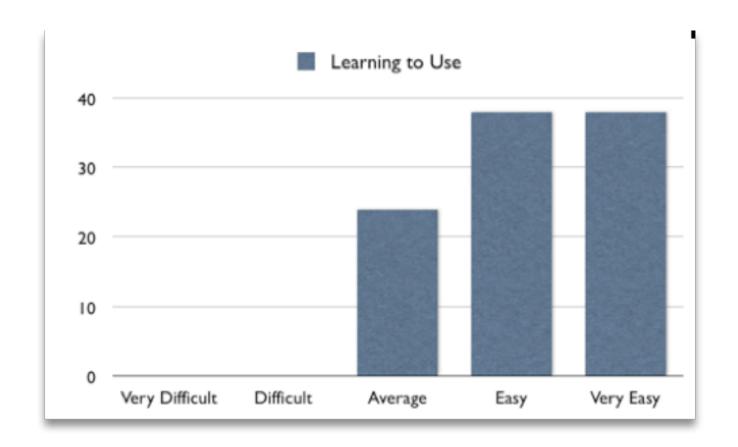

© Fabio Ciravegna, University of Sheffield

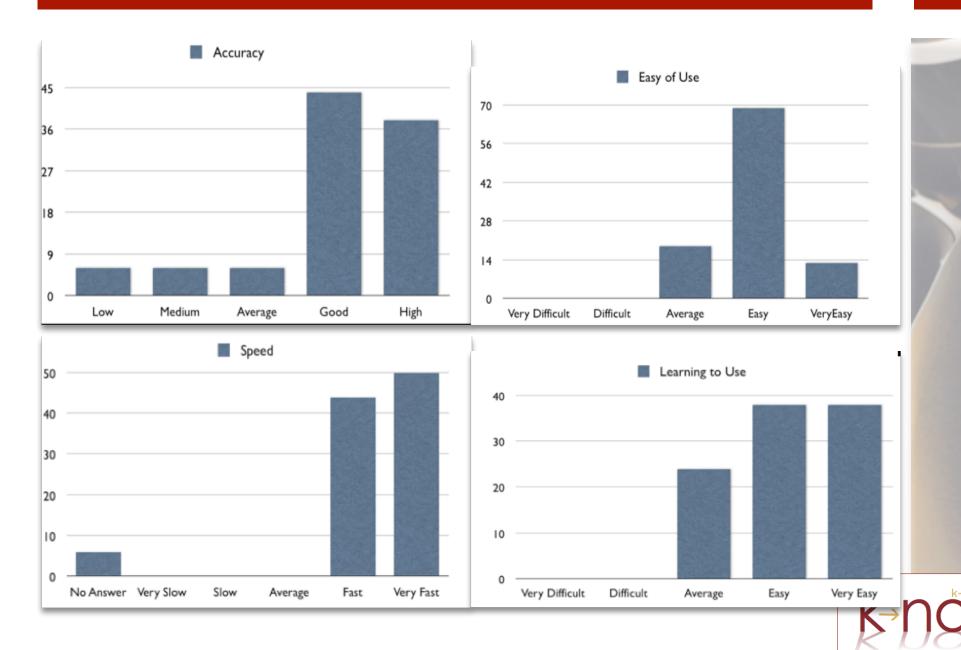



© Fabio Ciravegna, University of Sheffield




© Fabio Ciravegna, University of Sheffield




© Fabio Ciravegna, University of Sheffield

© Fabio Ciravegna, University of Sheffield

Search preferences: Service Engineers

Service engineers showed a clear predilection for hybrid search:

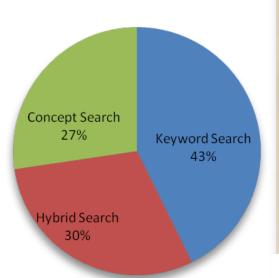
• 61% of the search were executed using the hybrid modality

24% using semantic search

15% using keyword search.

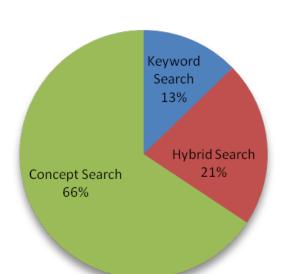
Reason: data they were looking for was not all covered by the metadata

Go quickly on slides: just say different people used different strategies


Concept Search

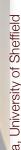
24%

Search preferences: designers


- Designers tended instead to favour keyword search:
 - 43% of the searches were executed using keyword search
 - 30% using hybrid
 - 27% using semantic search.

Search Strategies: Others

- The users belonging to other groups showed a predilection for concept search:
 - 66% of the searches were executed using semantic search
 - 24% using hybrid
 - 15% using keyword search.



Liked by Users?

- Finalist of Rolls-Royce Director's Creativity Award
 2007
 - Voted by employes for its innovation potential

o Ciravegna. University of Sheffiel

Liked by Users?

- Support to the design of new Trent XWB
 - Porting to 9 Information Sources
 - **2008-2009**
 - Carried out by:
 - 50% University
 - 50% k-now ltd (university spinout-company)
- Funds requested to UK Government for use of K-Tools for use in manufacturing

ravegna, University of Sheffiel

Conclusions

- Hybrid Search
 - It is compatible with the most used semantic search paradigms
 - Overcomes limitation of most current approaches based on metadata only
 - Accommodates different search strategies
 - Users can choose how to perform the query
 - Experimentally definitely outperforming both KS and OS

- Search across linked ontologies over intranet
- New ways of capturing information
 - User centred for new data
 - Cross-media
 - K-Forms
 - IE for legacy data
 - Cross-media

Fabio Ciravegna. University of Sheffield

All our technologies are semantic based, exploiting the power of the Semantic Web and of Natural Language Processing

Thank You!

- Contact Information
 - www.dcs.shef.ac.uk/~fabio
 - fabio@dcs.shef.ac.uk
- Intelligent Web Technologies Lab
 - http://nlp.shef.ac.uk/wig/
- NLP Sheffield
 - http://nlp.shef.ac.uk/
- University of Sheffield
 - www.shef.ac.uk
- K-Now Ltd
 - www.k-now.co.uk

