Conceptual Clustering: Concept Formation, Drift and Novelty Detection

Nicola Fanizzi <u>Claudia d'Amato</u> Floriana Esposito

Department of Computer Science University of Bari

ESWC 2008 Tenerife, June 4, 2008

<□> <@> < ≥> < ≥> < ≥</p>

900

Contents

- Introduction & Motivation
- 2 Reference Representation
- Measuring Individual Dissimilarity
- 4 Clustering Individuals of An Ontology
- 5 Automated Concept Drift and Novelty Detection
- 6 Clustering Evaluation
- Conclusions and Future Work Proposals

- 4 同 1 - 4 回 1 - 4 回 1

Reference Representation Measuring Individual Dissimilarity Clustering Individuals of An Ontology Automated Concept Drift and Novelty Detection Clustering Evaluation Conclusions and Future Work Proposals

Introduction & Motivation Clustering Methods: Main Idea Conceptual Clustering: Related Works

Introduction & Motivation

- Ontologies evolve over the time.
 - New instances are asserted
 - New concepts are defined
- Concept Drift
 - the change of a known concept w.r.t. the evidence provided by new annotated individuals that may be made available over time
- Novelty Detection
 - isolated cluster in the search space that requires to be defined through new emerging concepts to be added to the KB
- *IDEA* : to use Conceptual clustering methods for automatically discover them

< ロ > < 同 > < 回 > < 回 >

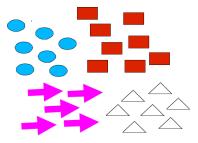
Reference Representation Measuring Individual Dissimilarity Clustering Individuals of An Ontology Automated Concept Drift and Novelty Detection Clustering Evaluation Conclusions and Future Work Proposals

Introduction & Motivation Clustering Methods: Main Idea Conceptual Clustering: Related Works

Basics on Clustering Methods

Clustering methods: unsupervised inductive learning methods that organize a collection of unlabeled resources into meaningful clusters such that

- intra-cluster *similarity* is high
- inter-cluster *similarity* is low



100

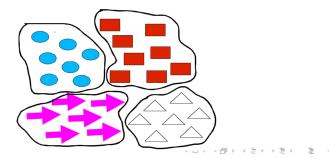
Reference Representation Measuring Individual Dissimilarity Clustering Individuals of An Ontology Automated Concept Drift and Novelty Detection Clustering Evaluation Conclusions and Future Work Proposals

Introduction & Motivation Clustering Methods: Main Idea Conceptual Clustering: Related Works

Basics on Clustering Methods

Clustering methods: unsupervised inductive learning methods that organize a collection of unlabeled resources into meaningful clusters such that

- intra-cluster *similarity* is high
- inter-cluster *similarity* is low



Introduction & Motivation Reference Representation

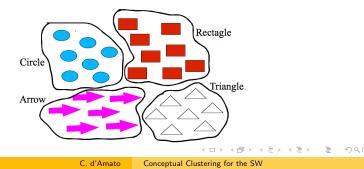
Keterence Representation Measuring Individual Dissimilarity Clustering Individuals of An Ontology Automated Concept Drift and Novelty Detection Clustering Evaluation Conclusions and Future Work Proposals

Introduction & Motivation Clustering Methods: Main Idea Conceptual Clustering: Related Works

Basics on Clustering Methods

Clustering methods: unsupervised inductive learning methods that organize a collection of unlabeled resources into meaningful clusters such that

- intra-cluster *similarity* is high
- inter-cluster *similarity* is low



Reference Representation Measuring Individual Dissimilarity Clustering Individuals of An Ontology Automated Concept Drift and Novelty Detection Clustering Evaluation Conclusions and Future Work Proposals

Introduction & Motivation Clustering Methods: Main Idea Conceptual Clustering: Related Works

Conceptual Clustering: Related Works

- Few algorithms for Conceptual Clustering (CC) with multi-relational representations [Stepp & Michalski, 86]
- Fewer dealing with the SW standard representations and their semantics
 - KLUSTER [Kietz & Morik, 94]
 - CSKA [Fanizzi et al., 04]
 - Produce a *flat output*
 - Suffer from noise in the data
- Proposal of a new divisional hierarchical CC algorithm that
 - is **similarity-based** ⇒ *noise tolerant*
 - produces a *hierarchy of clusters*

Reference Representation

- OWL representation founded in Description Logics (DL):
- Knowledge base: $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
 - TBox \mathcal{T} : a set of DL concept definitions
 - \bullet ABox $\mathcal{A}:$ assertions (facts) about the world state
 - \bullet $\mathsf{Ind}(\mathcal{A}):$ set of Individuals (resources) in the ABox
- Inference service of interest from the KBMS:
 - *instance-checking*: decision procedure that assess if an individual is instance of a certain concept or not
 - Sometimes a simple lookup may be sufficient

Semi-Distance Measure: Main Idea

- **IDEA**: on a semantic level, similar individuals should behave similarly w.r.t. the same concepts
- Following HDD **[Sebag 1997]**: individuals can be compared on the grounds of their behavior w.r.t. a given set of hypotheses $F = \{F_1, F_2, \ldots, F_m\}$, that is a collection of (primitive or defined) concept descriptions
 - *F* stands as a group of *discriminating features* expressed in the considered language
- As such, the new measure *totally depends on semantic* aspects of the individuals in the KB

Semantic Semi-Dinstance Measure: Definition

[Fanizzi et al. @ DL 2007] Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ be a KB and let $Ind(\mathcal{A})$ be the set of the individuals in \mathcal{A} . Given sets of concept descriptions $F = \{F_1, F_2, \dots, F_m\}$ in \mathcal{T} , a *family of semi-distance functions* $d_p^F : Ind(\mathcal{A}) \times Ind(\mathcal{A}) \mapsto \mathbb{R}$ is defined as follows:

$$orall a,b\in \operatorname{Ind}(\mathcal{A}) \quad d^{\mathsf{F}}_{p}(a,b):=rac{1}{m}\left[\sum_{i=1}^{m}\mid \pi_{i}(a)-\pi_{i}(b)\mid^{p}
ight]^{1/p}$$

where p > 0 and $\forall i \in \{1, ..., m\}$ the *projection function* π_i is defined by:

$$\forall a \in \mathsf{Ind}(\mathcal{A}) \quad \pi_i(a) = \begin{cases} 1 & F_i(a) \in \mathcal{A} & (\mathcal{K} \models F_i(a)) \\ 0 & \neg F_i(a) \in \mathcal{A} & (\mathcal{K} \models \neg F_i(a)) \\ \frac{1}{2} & otherwise \end{cases}$$

Semi-Distance Measure: Discussion

- More similar the considered individuals are, more similar the project function values are $\Rightarrow d_p^F \simeq 0$
- More different the considered individuals are, more different the projection values are \Rightarrow the value of d_p^F will increase
- The measure does not depend on any specific constructor of the language ⇒ Language Independent Measure
- The measure complexity mainly depends from the complexity of the *Instance Checking* operator for the chosen DL

• $Compl(d_p^F) = |F| \cdot 2 \cdot Compl(IChk)$

• Optimal discriminating feature set could be learned

A D > A D > A D > A D >

Clustering Algorithm Conceptual Clustering Step

Clustering Algorithm: Characteristics

- *Hierarchical* algorithm ⇒ returns a *hierarchy of clusters*
- Inspired to the K-Means algorithm
 - Defined for feature vectors representation where features are only numerical and the notion of the cluster *centroids* (weighted average of points in a cluster) is used for partition
- Exploits the notion of **medoid** (drawn from the PAM algorithm)
 - central element in a group of instances

$$m = \mathrm{medoid}(C) = \operatorname*{argmin}_{a \in C} \sum_{j=1}^{n} d(a, a_j)$$

(日) (同) (三) (三)

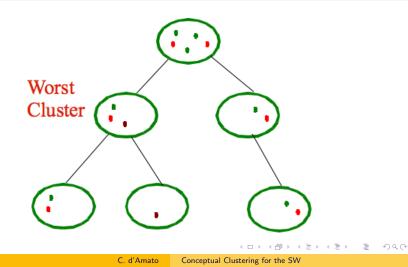
Clustering Algorithm Conceptual Clustering Step

Running the Clustering Algorithm

- *Level-wise* (number of level given in input, it is the number of clusters that we want to obtain): find the **worst cluster** on that level that has to be slip
 - worst cluster ⇔ having the least average inner similarity (cohesiveness)
 - **select** the two **most dissimilar element** in the cluster *as medoid*
- split the cluster iterating (till convergence)
 - **distribute individuals** to either partition on the grounds of their similarity w.r.t. the medoids
 - given this bipartition, **compute the new medoids** for either cluster
 - **STOP when** the two generated medoids are equal to the previous ones (stable configuration) **or when** the maximum number of iteration is reached

Clustering Algorithm Conceptual Clustering Step

Clustering Algorithm: Main Idea



Clustering Algorithm Conceptual Clustering Step

Conceptual Clustering Step

For DLs that allow for (approximations of) the msc and lcs, (e.g. \mathcal{ALC} or \mathcal{ALE}):

- given a cluster nodej,
 - $\forall a_i \in \mathsf{node}_j \text{ compute } M_i := msc(a_i) \text{ w.r.t. the ABox } \mathcal{A}$
 - let $MSCs_j := \{M_i | a_i \in \mathsf{node}_j\}$
- node; intensional description lcs(MSCs_j)

Alternatively a Supervised Learning phase can be used

- Learn a definition for *node_j* whose individuals represent the positive examples while the individuals in the other clusters at the same level are the negative example
- More complex algorithms for concepts learning in some DLs may be employed ([Esposito,04] [Lehmann,06])

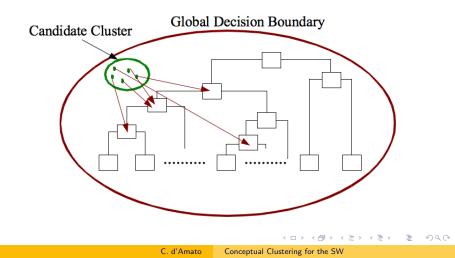
Automated Concept Drift and Novelty Detection

If *new annotated individuals are made available* they have to be integrated in the clustering model

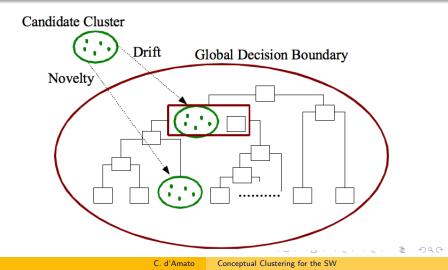
- Each individual is assigned to the closest cluster (measuring the distance w.r.t. the cluster medoids)
- The entire clustering model is recomputed
- The new instances are considered to be a *candidate* cluster
 - An evaluation of it is performed in order to assess its nature

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Evaluating the Candidate Cluster: Main Idea 1/2



Evaluating the Candidate Cluster: Main Idea 2/2



Evaluating the Candidate Cluster

- Given the initial clustering model, a *global boundary* is computed for it
 - ∀C_i ∈ Model, decision boundary cluster = max_{aj∈Ci}d(a_j, m_i) (or the average)
 - The average of the decision boundary clusters w.r.t. all clusters represent the *decision boundary model or global boundary doverall*
- The decision boundary for the candidate cluster CandCluster is computed *d_{candidate}*
- if d_{candidate} ≤ d_{ovevrall} then CandCluster is a normal cluster
 integrate :

 $\forall a_i \in \mathsf{CandCluster} \ a_i \to C_j \ s.t. \ d(a_i, m_j) = \min_{m_i} d(a_i, m_j)$

• else CandCluster is a Valid Candidate for *Concept Drift* or *Novelty Detection*

Evaluating Concept Drift and Novelty Detection

- The Global Cluster Medoid is computed $\overline{m} := \text{medoid}(\{m_j \mid C_j \in \text{Model}\})$
- $d_{\max} := \max_{m_j \in \text{Model}} d(\overline{m}, m_j)$
- if $d(\overline{m}, m_{CC}) \leq d_{max}$ the CandCluster is a *Concept Drift*
 - CandCluster is **Merged** with the most similar cluster $C_j \in Model$
- if $d(\overline{m}, m_{CC}) \ge d_{max}$ the CandCluster is a *Novel Concept*
 - CandCluster is **added** to the model (at the level *j* where the most similar cluster is found)

Experimental Setting Evaluation Methodology Experimental Results

Experimental Setting

ontology	DL	#concepts	#obj. prop.	#data prop.	#individuals
FSM	SOF(D)	20	10	7	37
SWM.	$\mathcal{ALCOF}(D)$	19	9	1	115
TRANSPORTATION	ALC	44	7	0	250
Financial	\mathcal{ALCIF}	60	17	0	652
NTN	$\mathcal{SHIF}(D)$	47	27	8	676

- For each ontology, the *experiments* have been *repeated for varying numbers k* of clusters (5 through 20)
- For computing individual distances *all concepts* in the ontology have been used as committee of features
 - this guarantees high redundancy and thus meaningful results
- PELLET reasoner employed for computing the projections

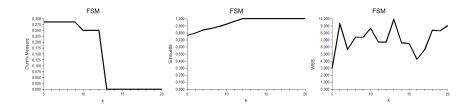
Experimental Setting Evaluation Methodology Experimental Results

Evaluation Methodology

- Obtained clusters evaluated, per each value of *k* by the use of the standard metrics
 - Generalized Dunn's index $[0, +\infty[$
 - Mean Square error WSS cohesion index $[0, +\infty[$
 - within cluster squared sum of distances from medoid
 - Silhouette index [-1, +1]
- An overall experimentation of **16 repetitions** on a dataset took *from a few minutes to 1.5 hours* on a 2.5GhZ (512Mb RAM) Linux Machine.

Experimental Setting Evaluation Methodology Experimental Results

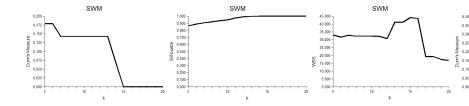
Experimental Results 1/3



- Silhouette (most representative index)
 - Close to its max value (1)
- Dunn's + WSS:
 - knees can give a hint of optimal choice for clustering

Experimental Setting Evaluation Methodology Experimental Results

Experimental Results 2/3



C. d'Amato Conceptual Clustering for the SW

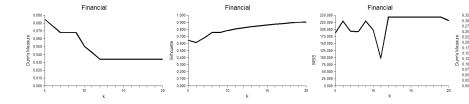
イロト イポト イヨト イヨト

3

5900

Experimental Setting Evaluation Methodology Experimental Results

Experimental Results 3/3



C. d'Amato Conceptual Clustering for the SW

イロト イポト イヨト イヨト

3

5900

Conclusions

Conclusions Future Work

- A hierarchical clustering algorithm for relational KBs expressed in any DL has been presented
- Based on a language independent dissimilarity measure grounded on resource semantics
 - The instance checking inference operator is exploited
- Clusters have been experimentally evaluated
 - Registered good preliminary results particularly w.r.t. Silhouette quality index

<ロト <同ト < ヨト < ヨト

Future Works

Conclusions Future Work

- Grouping homogeneous individuals in the candidate cluster and evaluate each group w.r.t. the model
- Evaluating the clustering algorithm by the use of the distance optimization
- Extension to Fuzzy clustering techniques
- Conceptual Clustering Step as a Supervised learning phase with complex DL languages
- Application: Clustering Semantic WS descriptions for fast retrieval and matchmaking

Conclusions Future Work

That's all! Questions?

C. d'Amato Conceptual Clustering for the SW

イロト イポト イヨト イヨト

э

DQ P