Query Answering and Ontology Population: an Inductive Approach

<u>Claudia d'Amato</u> Nicola Fanizzi Floriana Esposito

Department of Computer Science University of Bari

ESWC 2008 Tenerife, June 4, 2008

<□> <@> < ≥> < ≥> < ≥</p>

500

Introduction & Motivation

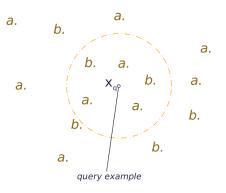
- 2 Concept Retrieval by Semantic Nearest Neighbor Search
- 3 A Semantic Semi-Distance Measure for DLs

4 Experimentation

- Setting
- Evaluation Parameters
- Experimental Results
- **5** Conclusions and Future Works

・ 同 ト ・ ラ ト ・ ラ ト

Introduction & Motivations


- In the SW context, reasoning is performed through deductive-based inference
- Purely logic methods may fail when data sources are distributed and potentially incoherent
 - This has given rise to *alternative methods* such as approximate and inductive reasoning
- Focus on *Query Answering* task i.e. finding the extension of a query concept
 - *It can can be cast* as a problem of establishing the class membership of the individuals in a KB.
 - It can be solved by the use of *instance-based methods* that are known to be both *very efficient* and *fault-tolerant* compared to the classic logic-based methods.
 - The Nearest Neighbor approach is adopted

Knowledge Base Representation

- OWL representation founded in Description Logics (DL):
- Knowledge base: $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
 - TBox \mathcal{T} : a set of DL concept definitions
 - ABox \mathcal{A} : assertions (facts) about the world state
 - Ind(A): set of Individuals (resources) in the ABox
- Inference service of interest from the KBMS:
 - *instance-checking*: decision procedure that assess if an individual is instance of a certain concept or not
 - Sometimes a simple lookup may be sufficient

Nearest Neighbor Classification

classes: a, b k = 5

$$class(x_q) \leftarrow ?$$

イロト イポト イヨト イヨト

5900

3

Nearest Neighbor Classification

classes: a, b k = 5

а. а. b. a. b. а. b. a. а. a. a. b. b b. a. query example

イロト イポト イヨト イヨト

5900

Э

Technical Problems

- Generally applied to *feature vector* representation
 → upgrade k-NN to more expressive representations
- Classification: classes considered as *disjoint*
 - \rightarrow cannot assume disjointness of all concepts
- An implicit Closed World Assumption is made in ML
 → cope with the Open World Assumption made in SeWeb

- 4 同 1 4 日 1 4 日 1

Customization to DLs

- Definition of a dissimilarity measure applicable to ontological knowledge
- Alternative classification procedure adopted:
 - multi-class problem *decomposed* into smaller *binary classification problems* (one per target concept)
 - For each query concept *Q*: binary classification {-1,+1}
- Extend the possible results with a *third value* 0 representing unknown classification: {-1, 0, +1}

Weighted majority voting criterion is applied

Realized k-NN algorithm

- **Training Phase:** All training examples (individuals in the KB) are memorized jointly with the classes to which they belong to
- Testing Phase:
 - For each test example x_q, given a dissimilarity measure d, the k training elements less dissimilar from x_q are determined, hence

$$\hat{h}_j(x_q) := \operatorname*{argmax}_{v \in V} \sum_{i=1}^k \omega_i \cdot \delta(v, h_j(x_i)) \qquad \forall j \in \{1, \dots, s\}$$
(1)

where $V = \{-1, 0, +1\}$; $\delta(a, b) = 1$ if a = b; $\delta(a, b) = 0$ if $a \neq b$; $\omega_i = 1/d(x_q, x_i)$ and

$$h_j(x) = \begin{cases} +1 & C_j(x) \in \mathcal{A} & (\mathcal{K} \models C_j(x)) \\ -1 & \neg C_j(x) \in \mathcal{A} & (\mathcal{K} \models \neg C_j(x)) \\ 0 & otherwise \end{cases}$$

◆ロ > ◆母 > ◆臣 > ◆臣 >

Rationale Measure Definition Distance Measure: Example

Semi-Distance Measure: Rationale

- **IDEA**: on a semantic level, similar individuals should behave similarly w.r.t. the same concepts
- Following HDD **[Sebag 1997]**: individuals can be compared on the grounds of their behavior w.r.t. a given set of hypotheses $F = \{F_1, F_2, \ldots, F_m\}$, that is a collection of (primitive or defined) concepts **[Fanizzi et al. @ DL 2007]**
 - *F* stands as a group of *discriminating features* expressed in the considered language

• **Proposed Extention:** Features are weighted w.r.t. their *discriminating power* in determining the dissimilarity value.

- Weights determined on the ground of *information conveyed* that is measured with the notion of *entropy*
- As such, the new measure *totally depends on semantic* aspects of the individuals in the KB

Rationale Measure Definition Distance Measure: Example

Semantic Semi-Dinstance Measure: Definition

Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ be a KB and let $Ind(\mathcal{A})$ be the set of the individuals in \mathcal{A} . Given sets of concept descriptions $F = \{F_1, F_2, \dots, F_m\}$ in \mathcal{T} , a *family of semi-distance functions* $d_p^F : Ind(\mathcal{A}) \times Ind(\mathcal{A}) \mapsto \mathbb{R}^+$ is defined as follows:

$$\forall a, b \in \mathsf{Ind}(\mathcal{A}) \quad d_p^{\mathsf{F}}(a, b) := \frac{1}{m} \left[\sum_{i=1}^m \overline{\omega}_i \cdot \mid \pi_i(a) - \pi_i(b) \mid^p \right]^{1/p}$$

where p > 0 and $\forall i \in \{1, ..., m\}$ the *projection function* π_i is defined by:

$$\forall a \in \mathsf{Ind}(\mathcal{A}) \quad \pi_i(a) = \begin{cases} 1 & F_i(a) \in \mathcal{A} & (\mathcal{K} \models F_i(a)) \\ 0 & \neg F_i(a) \in \mathcal{A} & (\mathcal{K} \models \neg F_i(a)) \\ \frac{1}{2} & otherwise \end{cases}$$

Rationale Measure Definition Distance Measure: Example

Defining Feature Weight

- Features are weighted w.r.t. their *discriminating power* in determining the dissimilarity value.
 - Weights determined on the ground of *the quantity information conveyed* ⇒ measured as the *entropy* of the feature
- Rationale: the more general a feature (or its negation) is (low entropy) the less usable it is for distinguishing the two individuals and vice versa
- The probability of a feature F is approximated as $P_F = |\text{retrieval}(F)| / |\text{Ind}(A)|$
- Considering also P_{¬F} related to its negation and that related to the unclassified individuals (w.r.t. F), denoted P_U, the entropic measure of F is given by:

 $H(F) = -(P_F \log(P_F) + P_{\neg F} \log(P_{\neg F}) + P_U \log(P_U))$

Rationale Measure Definition Distance Measure: Example

Distance Measure: Example

 $\mathcal{T} = \{$ Female $\equiv \neg$ Male, Parent $\equiv \forall$ child.Being $\sqcap \exists$ child.Being, Father \equiv Male \sqcap Parent. FatherWithoutSons \equiv Father $\sqcap \forall$ child.Female} $\mathcal{A} = \{ Being(ZEUS), Being(APOLLO), Being(HERCULES), Being(HERA), \}$ Male(ZEUS), Male(APOLLO), Male(HERCULES), Parent(ZEUS), Parent(APOLLO), ¬Father(HERA), God(ZEUS), God(APOLLO), God(HERA), ¬God(HERCULES), hasChild(ZEUS, APOLLO), hasChild(HERA, APOLLO), hasChild(ZEUS, HERCULES), } Suppose $F = \{F_1, F_2, F_3, F_4\} = \{Male, God, Parent, FatherWithoutSons\}.$ Let us compute the distances (with p = 1): $d_1^{\rm F}({\rm HERCULES}, {\rm ZEUS}) =$ $(\overline{\omega}_{\mathsf{Male}} \cdot |1-1| + \overline{\omega}_{\mathsf{God}} \cdot |0-1| + \overline{\omega}_{\mathsf{Parent}} \cdot |1/2-1| + \overline{\omega}_{\mathsf{FatherWithoutSons}} \cdot |1/2-0|)/4$ Computation $\overline{\omega}_i$ Trivial \Rightarrow Omitted

・ロト ・回ト ・ヨト ・ヨト

Setting Evaluation Parameters Experimental Results

Experimental Setting

Ontology	DL language	#concepts	#object prop.	#individuals
SWM	$\mathcal{ALCOF}(D)$	19	9	115
BIOPAX	$\mathcal{ALCHF}(D)$	28	19	323
LUBM	$\mathcal{ALR}^+\mathcal{HI}(D)$	43	7	555
NTN	$\mathcal{SHIF}(D)$	47	27	676
SWSD	ALCH	258	25	732
FINANCIAL	\mathcal{ALCIF}	60	17	1000

- 20 query concept (randomly generated) considered for each ontology
- All the individuals in each ontology have been classified;
 k = log | TrainingSet | where TrainingSet = |Ind(A)| · 4%
- d₁^F employed considering both *uniform feature weights* and *entropic feature weights*; F = all concepts in the ontology
- 10-fold cross validation
- Performance compared with a standard reasoner (PELLET). $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Setting Evaluation Parameters Experimental Results

Evaluation in terms of standard IR measures

Average \pm standard deviation and [min.;max.] intervals.

	UNIFORM WE	IGHT MEASU	RE	Entropic Measure			
	precision	recall	F-measure		precision	recall	F-measure
SWM		84.4 ± 30.6		SWM		75.8 ± 36.7	
		[11.1;100.0]		5 11 11		[11.1;100.0]	
BIOPAX		97.3 ± 11.3		BioPax		97.3 ± 11.3	
DIOI AX	[93.8;100.0]	[50.0;100.0]	[66.7;100.0]	DIOI AX	[98.2;100.0]	[50.0;100.0]	[66.7;100.0]
LUBM		71.7 ± 38.4		LUBM		81.6 ± 32.8	
		[9.1;100.0]			[100.0;100.0]	[11.1;100.0]	[20.0;100.0]
NTN		62.6 ± 42.8		NTN	97.0 ± 5.8	40.1 ± 41.3	45.1 ± 35.4
	[86.9;100.0]	[4.3;100.0]	[8.2;100.0]		[76.4;100.0]	[4.3;100.0]	[8.2;97.2]
SWSD	74.7 ± 37.2	43.4 ± 35.5	54.9 ± 34.7	SWSD	94.1 ± 18.0	38.4 ± 37.9	46.5 ± 35.0
	[8.0;100.0]	[2.2;100.0]	[4.3;100.0]	5 11 5 D	[40.0;100.0]	[2.4;100.0]	[4.5;100.0]
Financial		94.8 ± 15.3		Financial		95.0 ± 15.4	
	[94.3;100.0]	[50.0;100.0]	[66.7;100.0]	FINANCIAL	[98.7;100.0]	[50.0;100.0]	[66.7;100.0]

イロト イポト イヨト イヨト

SQC

3

Setting Evaluation Parameters Experimental Results

Outcomes: Discussion

- Precision and Recall quite high
 - except for SWSD where precision was significantly lower since a very limited number of individuals per concept was available
 - the *entropic measure* improve results w.r.t. the one using uniform weights
- Recall less than precision \Rightarrow due to the OWA
 - Many cases in which the reasoner does not return any result differently from the classifier
 - Behavior registered as mistake while it may likely turn out to be a correct inference when judged by a human agent.

∜

• In order to distinguish between inductively classified individuals and real mistakes additional indices have been considered.

Setting Evaluation Parameters Experimental Results

Additional Evaluation Parameters

- *match rate*: cases of match of the classification returns by both procedures.
- omission error rate: cases when our procedure cannot decide
 (0) while the reasoner gave a classification (±1)
- commission error rate: cases when our procedure returned ± 1 while the reasoner gave the opposite outcome ∓ 1
- *induction rate*: cases when the reasoner cannot decide (0) while our procedure gave a classification (±1)

<ロト <同ト < ヨト < ヨト

Setting Evaluation Parameters Experimental Results

Additional Outcomes

Average \pm standard deviation and [min.;max.] intervals.

					-				
UNIFORM WEIGHT MEASURE					Entropic Measure				
	match	commission	omission	induction		match	commission	omission	induction
SWM	93.3 ± 10.3	0.0 ± 0.0	2.5 ± 4.4	4.2 ± 10.5	SWM	97.5 ± 3.2	0.0 ± 0.0	2.2 ± 3.1	0.3 ± 1.2
13 W W1	^{5 W W} [68.7;100.0] [0.0;0.0]	[0.0;16.5]	[0.0;31.3]	5 10 101	[89.6;100.0]	[0.0;0.0]	[0.0;10.4]	[0.0;5.2]	
BioPax	99.9 ± 0.2	0.2 ± 0.2	0.0 ± 0.0	0.0 ± 0.0	BIOPAX	99.9 ± 0.2	0.1 ± 0.2	0.0 ± 0.0	0.0 ± 0.0
DIOFAX	[99.4;100.0]	[0.0;0.06]	[0.0;0.0]	[0.0;0.0]		[99.4;100.0]	[0.0;0.06]	[0.0;0.0]	[0.0;0.0]
LUBM	99.2 ± 0.8	0.0 ± 0.0	0.8 ± 0.8	0.0 ± 0.0	LUBM	99.5 ± 0.7	0.0 ± 0.0	0.5 ± 0.7	0.0 ± 0.0
LUBM	[98.0;100.0]	[0.0;0.0]	[0.0;0.2]	[0.0;0.0]		[98.2;100.0]	[0.0;0.0]	[0.0; 1.8]	[0.0;0.0]
NTN	98.6 ± 1.5	0.0 ± 0.1	0.8 ± 1.1	0.6 ± 1.4	NTN	97.5 ± 1.9	0.6 ± 0.7	1.3 ± 1.4	0.6 ± 1.7
IN I IN	[93.9;100.0]	[0.0;0.4]	[0.0;3.7]	[0.0; 6.1]		[91.3;99.3]	[0.0; 1.6]	[0.0;4.9]	[0.0;7.1]
SWSD	97.5 ± 3.7	0.0 ± 0.0	1.8 ± 2.6	0.8 ± 1.5	SWSD	98.0 ± 3.0	0.0 ± 0.0	1.9 ± 2.9	0.1 ± 0.2
5115D	[84.6;100.0]	[0.0;0.0]	[0.0;9.7]	[0.0;5.7]		[88.3;100.0]	[0.0;0.0]	[0.0;11.3]	[0.0;0.5]
	99.5 ± 0.8	0.3 ± 0.7	0.0 ± 0.0	0.2 ± 0.2	INANCIAL	99.7 ± 0.2	0.0 ± 0.0	0.0 ± 0.0	0.2 ± 0.2
	[97.3;100.0]	[0.0;2.4]	[0.0;0.0]	[0.0;0.6] ^{F1}		[99.4;100.0]	[0.0;0.1]	[0.0;0.0]	[0.0;0.6]

イロト イポト イヨト イヨト

Э

SQC

Setting Evaluation Parameters Experimental Results

Additional outcomes: Discussion

- Commission error almost null on average
- Omission error rate almost null
- Induction Rate not null
 - new knowledge (not logically derivable) is induced ⇒ it can be used for making the ontology population task semi-automatic
 - exception for LUBM and BIOPAX ontologies, where individuals are instances of the same concepts (most of the time a single concept) and this does not allow to induce new knowledge.
 - For the other ontologies, induced knowledge can be found ⇒ individuals are instances of many concepts and they are homogeneously spread w.r.t. the several concepts.

Setting Evaluation Parameters Experimental Results

Likelihood of the inductive assertions

Since inductive results are not certain, the likelihood of the decision made by the procedure could be also measured:

 given the nearest training individuals in *NN*(x_q, k) = {x₁,..., x_k}, the quantity that determined the decision should be normalized by dividing it by the sum of such arguments over the (three) possible values:

$$I(class(x_q) = v | NN(x_q, k)) = \frac{\sum_{i=1}^{k} w_i \cdot \delta(v, h_Q(x_i))}{\sum_{v' \in V} \sum_{i=1}^{k} w_i \cdot \delta(v', h_Q(x_i))}$$
(2)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Setting Evaluation Parameters Experimental Results

Likelihood of the inductive assertions: Results

	SWM	NTN	SWSD	Financial
3-valued case	76.26	98.36	76.27	92.55
2-valued case	100.0	98.36	76.27	92.55

- First row ⇒ likelihood based on the normalization over the 3 possible values (0, +1, -1).
- Second row ⇒ likelihood based on the normalization over the 2 possible values (+1, -1).
 - Likelihood increases only for $SWM \Rightarrow$ this in the only case in which example labeled with 0 are selected as neighbors.
- High likelihood values ⇒ the distance function selects very similar examples w.r.t. the query instance

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusions & Future Work

Conclusions: Proposed and inductive method for performing concept retrieval that is:

- comparable with a deductive reasoner (even working with quite limited training sets)
- able to induce new knowledge not logically derivable

Future works:

• Investigate feature building/selection for reducing the effort in computing individual distance

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

That's all! Questions ?

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで