

Rabbit: Developing a controlled natural language for authoring ontologies

Glen Hart, Martina Johnson and Catherine Dolbear

- Motivation for Controlled Natural Language (CNL)
 research at Ordnance Survey
- Rabbit CNL
 - Design considerations
 - Human subject testing

Ordnance Survey - who we are

- National Mapping Agency of Great Britain
- Data vendor: one of the largest geospatial databases in the world
- Customers use GIS systems & spatially enabled databases to process data
- Building ontologies to describe our data & make reuse and integration easier

Current issues with ontology authoring

- Domain experts find ontology authoring difficult in terms of:
 - Understanding meaning of OWL-DL language
 - Good practice modelling techniques
- Controlled natural language required for:
 - Domain experts to author ontologies
 - Domain experts to validate ontologies for reuse
 - Documentation for OWL version.

Motivation for Controlled Natural Language (CNL)
 research at Ordnance Survey

Rabbit CNL

- Design considerations
- Human subject testing

CNLs in the literature

- Other CNLs available: CLOnE, ACE, PENG (SOS)
- OWL WG Task Force to develop a controlled natural language syntax
- Rabbit developed out of modelling ontologies, rather than driven by linguistics or Description Logics

Building ontologies

</rdfs:subClassOf>

Rabbit:

Rabbit - design principles

- Allow the domain expert, supported by a knowledge engineer and software, to express their knowledge:
 - Easily and simply
 - In as much detail as necessary.
- Formal grammar so that the subset which can be expressed as OWL can be systematically translated.
- Understandable by domain experts with little or no knowledge of Rabbit.
- Independent of any specific domain.

Rabbit - design

- Simple, 'natural' expression
- Short statements preferred
- Balance between natural expression and ambiguity
- Avoid extra input for the author!
- Driver is support of domain experts' expression, not representing DL

Rabbit - translating to OWL

Structure	Rabbit	OWL
Concept Definition	Bank (River) is a concept.	Class: Bank_River
		rdf:label "Bank"
Instance Declaration	England is a Country.	Individual: england
		Types: Country
Subsumption	Every Bourne is a kind of Stream.	Bourne subClassOf Stream
Existential Quantifier	Every River flows into a Sea.	River -> flowsInto Some Sea
Universal Quantifier	Every Channel is connected to a Pool, Lake or nothing	Channel -> isConnectedTo Only ((Pool or Lake) and not (Pool and Lake))
Defined Class definition	A Source is defined as:	Source = Spring or Wetland and feeds Some (River or Stream)
	Every Source is a kind of Spring or Wetland;	
	Every Source feeds a River or a Stream.	
Disjoints	Field and Lake are mutually exclusive	Field DisjointWith: Lake

Rabbit - translating to OWL

Structure	Rabbit	OWL
Qualified Cardinality Restriction	Every Braided River Stretch flows in at least 2 Channels.	BraidedRiverStretch -> flowsIn min 2 Channel
Union	Every Floodplain is adjacent to 1 or more of a River or a Stream.	Floodplain -> adjacentTo Some (River or Stream)
Covering Axiom	Every Mill Stream only flows in a Mill Race	MillStream -> flowsIn some MillRace and flowsIn only MillRace
General Concept Inclusion Axiom	Everything that has a part, that contains some Water, will also contain some Water	hasPart Some (contains Some Water) -> contains Some Water
Concept roles/ functions/ purposes	Every School has purpose Education of Children.	School -> hasPurpose some (Education and of some Child)

Rabbit - reuse of ontologies

• Experimental structures needed for research on merging ontologies

"Use references:

OSPlaces from http://www.ordnancesurvey.co.uk/ontology/Places.rbt."

- Referencing with extension can add additional axioms to the foreign concept
- Referencing with restriction all axioms from foreign ontology's concept ignored

"Reference Pub as Secondary Concept from OSPlaces".

ROO : a tool for authoring Rabbit

- Joint project with the University of Leeds to produce a Protégé plugin
 - Follows the OS ontology authoring method
 - Authors ontologies in Rabbit
 - Direct translation to OWL using GATE
- Poster at this conference

- Motivation for Controlled Natural Language (CNL)
 research at Ordnance Survey
- Rabbit CNL
 - Design considerations
 - Human subject testing

Human subject testing

- Phase 1: Understanding of Rabbit
 - Modifications to the language based on results
- Phase 2: Understanding of Rabbit testing language improvements
 - Relationships problematic for users
 - Rabbit more understandable than Manchester OWL Syntax
- Phase 3: Authoring Rabbit
 - Designing the experimental set-up
 - Pilot testing

Human subject testing - phase 1

- Web-based questionnaire tested with 221 geography students
- Fictitious domain users had no background knowledge
- Comprehension of sentence structure tested by multiple choice

Human subject testing - phase 1

- Testing design tried to isolate one structure at a time
- Over 75% correct was counted as acceptable
 - Cardinality ("at least", "more than", "exactly")
 - Inclusive OR ("1 or more of")
 - Existential and Universal quantifiers

Modifications to Rabbit based on phase 1 results

- *"is an instance of"* is difficult use *"is a"* instead.
- Originally used "A Halucinoptera is a kind of Insect"
 - Applicability to all Haluncinoptera not understood
 - Changed to "Every Halucinoptera is a kind of Insect"
- Relationship characteristics (transitive, symmetric etc) very difficult to understand use variables?

Phase 2 Results

- Comprehension of both concept and relationship sentences statistically significantly better for Rabbit compared with Manchester OWL syntax (univariate Anova)
- Rabbit concept sentences more comprehensible than relationship sentences.
- Relationship characteristics (transitive, inverse, functional etc) likely to always be a problem.
- Defined classes not understood

Phase 3: authoring

- Participants given:
 - 15 minute overview of the language
 - Table of Rabbit structures
- Text provided to control what participants "know" 1 hour available to convert that knowledge to Rabbit
- Pilot testing with 3 participants produced encouraging results
- Average of 75% of sentences correctly authored
- Errors often due to systematic misunderstanding (e.g. omitting Every)

- If we truly want the web to be semantic, we need to encode those semantics accurately
- This can only be achieved with the active involvement of domain experts.
- A controlled natural language assists domain experts to:
 - Express their knowledge
 - Validate others' ontologies
 - Model knowledge well

Thank you for your attention

http://www.ordnancesurvey.co.uk/ontology