Learning All Optimal Policies with Multiple Criteria

Leon Barrett & Srini Narayanan

University of California, Berkeley

July 7, 2008

- Standard Reinforcement Learning: single reward
- Multi-criterion learning, reduce to standard RL
 - e.g. Natarajan and Tadepalli. *Dynamic Preferences in Multi-Criteria Reinforcement Learning.* Proc. ICML, 2005.
- We lift to solve over all preferences at once
 - Can view all optimal policies
 - Can change preferences at runtime, without relearning

Reinforcement Learning: Important Components

- Maxmimize expected discounted reward
 - Summarize with V and Q
- Bellman equations: recurrence

•
$$Q^*(s, a) = \mathbb{E}[R(s, a) + \gamma V^*(s')]$$

Reward Decomposition

- Arbitrary choices
- Or twiddle to get desired behavior
- We make weights explicit: $R(s, a) = \overrightarrow{R}(s, a) \cdot \overrightarrow{w}$

- *V*(*s*₀)
- $Q(s_0, a_0)$

Q-Values in Space!

- *V*(*s*₀)
- $Q(s_0, a_0)$
- Each policy gives one value

(日) (四) (日) (日) (日)

æ

Q-Values in Space!

- *V*(*s*₀)
- $Q(s_0, a_0)$
- Each policy gives one value

(日) (四) (日) (日) (日)

æ

Q-Values in Space!

- *V*(*s*₀)
- $Q(s_0, a_0)$
- Each policy gives one value

(日) (四) (日) (日) (日)

æ

Revised Recurrences

Cal

æ

<ロト <回 > < 注 > < 注 > 、

•
$$\overset{\circ}{Q}^{*}(s, a) = \mathbb{E}\Big[\overrightarrow{R}(s, a) + \gamma \overset{\circ}{V}^{*}(s')\Big]$$

• $\overset{\circ}{V}^{*}(s) = \operatorname{hull} \bigcup_{a} \overset{\circ}{Q}^{*}(s, a)$

- Extract optimal value by taking max
- For all \vec{w} , solution identical to standard RL
 - Because max in any direction must be on hull

- $O(n^d)$ for high dimension
- Efficient for 2D and 3D

- Efficiency tricks
 - Witnesses: check with previous hull
 - Constrain \overrightarrow{w} space

• Rewrite as POMDP • $P(w) \leftrightarrow \overrightarrow{w}$

- New class of results: *all* optimal policies
 - Via convex hull version of Bellman recurrence
 - Complete view of useful policy space
 - On-line preference switching

- Combine with POMDPs
- Inverse problem: determine range of \vec{w}
 - Extract agent preferences
- Different discounting rates $\overrightarrow{\gamma}$
 - Approximate hyperbolic discounting

• My guinea pigs

Louis

Milo

Chester

