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Motivation

Standard Reinforcement Learning: single reward
Multi-criterion learning, reduce to standard RL

e.g. Natarajan and Tadepalli. Dynamic Preferences in
Multi-Criteria Reinforcement Learning. Proc. ICML, 2005.

We lift to solve over all preferences at once
Can view all optimal policies
Can change preferences at runtime, without relearning
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Reinforcement Learning: Important Components

Maxmimize expected discounted reward
Summarize with V and Q

Bellman equations: recurrence
Q∗(s,a) = E[R(s,a) + γV ∗(s′)]
V ∗(s) = maxa Q∗(s,a)

s s'a

Q(s,a)

V(s)V(s')

R(s,a)
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Reward Decomposition
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behavior

We make weights explicit:
R(s,a) =

−→
R (s,a) · −→w
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Q-Values in Space!

V (s0)

Q(s0,a0)

Each policy gives
one value
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Revised Recurrences
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Given a −→w

Extract optimal value by taking max
For all −→w , solution identical to standard RL

Because max in any direction must be on hull
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Example Results
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Complexity

O(nd) for high dimension
Efficient for 2D and 3D

Efficiency tricks
Witnesses: check with previous hull
Constrain −→w space
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POMDPs

Rewrite as POMDP
P(w)↔ −→w
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Contributions

New class of results: all optimal policies
Via convex hull version of Bellman recurrence
Complete view of useful policy space
On-line preference switching
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Future Work

Combine with POMDPs
Inverse problem: determine range of −→w

Extract agent preferences
Different discounting rates −→γ

Approximate hyperbolic discounting
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