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Motivation Network Planning Problem

Motivation: Network Planning Problem

Goal: Agent that can build and maintain a network.
States: Network configuration, traffic demands, etc.
Actions: Build or upgrade any link.
Rewards:

Revenue for delivering traffic.
Significant penalty for undelivered traffic.
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Motivation Network Planning Problem

Motivation: Network Planning Problem

Problems:
Large state space, large action space.
Rare, very significant events (link failures).
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Motivation Network Planning Problem

Our Approach

Most RL tasks work with simulators.
Use techniques from simulation literature for variance
reduction and rare event prediction:

Adaptive Importance Sampling
Adapt for on-line RL:

Proofs of convergence.
Bias-variance results.
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Importance Sampling Overview

Importance Sampling

Ep (h(X)) =
∫
h(x)p(x) =

∫
h(x)p(x)
q(x)

q(x)dx = Eq (h(X)w(X))

w(x) = p(x)/q(x) – importance sampling correction.
Consistent, unbiased estimator for Ep (h(X)) is:

Î =
1
N

N∑
i=1

h(Xi)w(Xi).

Used before in RL (Precup et al. ICML’01) for off-policy
learning.
Variance depends on choice of sampling distribution (q).
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Importance Sampling Overview

Minimum-Variance IS Distribution

Theorem (Stats 101)

The choice of q that minimizes the variance of Î is

q∗(x) =
|h(x)|p(x)∫ |h(s)|p(s)ds

Problem:
∫
h(s)p(s)ds is the quantity we are trying to

estimate.
ASA algorithm (Ahamed et al., 2006) adapted this for
estimating expected total cost on discrete Markov chains.

Uses stochastic approximation to estimate
minimum-variance sampling distribution.
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Reinforcement Learning MDPs

Markov Decision Processes

Set of states S and actions A. Agent selects actions
according to a policy π(s, a) = Pr (at = a|st = s).
Environment dynamics defined by specifying the transition
probabilities and the rewards

Pass′ = Pr
(
st+1 = s′|st = s, at = a

)
,

Rass′ : S ×A× S → R.

The value function is given by

V π(s) = Eπ

( ∞∑
k=0

γkrk+1|s0 = s

)
.

The Bellman equations for V π is

V π(s) =
∑
a∈A

π(s, a)
∑
s′∈S
Pass′ [Rass′ + γV π

s′ ] .
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Our approach REASA

MDPs with Rare Events

Normal States

Rare Event States

F

F

F

F T

F
G

G

S \ T

ε(s) is the true probability of rare event at state s.
Assume Pass′ = (1− ε(s))Fass′ + ε(s)Gss′ .
Assume simulator allows ε to be changed.
F and G may not be known.
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Our approach REASA

Rare event state sets

Definition
A subset of state T ⊂ S is called a rare event state set for
policy π if the following three properties hold:

1 For all s ∈ S, a ∈ A, s′ ∈ T , Fass′ = 0.
2 There exists s ∈ S, s′ ∈ T such that Gss′ > 0.
3 Let V π

F denote the value function obtained by using F for
the transition probabilities, then

∃s ∈ S s.t. |V π
F (s)− V π(s)| > ∆.
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Our approach REASA

Rare Event Adaptive Stochastic Approximation

Optimal rare event parameter ε̂:

ε∗(s) = ε(s)
∑

s′∈T Gss′
∑

a∈A π(s, a)[Rass′ + γV π(s′)]
V π(s)

.

Example (γ = 0, ε = 0.001):
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Our approach REASA

REASA Algorithm

Sketch:
Use rare event prob. estimate ε̂(s) to generate rare events.
On each transition (s, a, s′, r), calculate IS correction

ws =
{
ε(s)/ε̂(s) if s ∈ T ,
(1− ε(s))/(1− ε̂(s)) if s 6∈ T ,

and update trajectory IS correction W .
Update our value function estimate for s:

V̂ π(s)← V̂ π(s) + αW [ws(r + V̂ π(s′))− V̂ π(s)].

Update the contribution to V π of the rare events states
(T (s)) and regular states (U(s)).
Update rare event parameter estimate ε̂ (keep bounded
using parameter δ ∈ (0, 1)).

ε̂(s) = min
(

max
(

ε(s)|T (s)|
ε(s)|T (s)|+ (1− ε(s))|U(s)| , δ

)
, 1− δ

)
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Our approach REASA

Theoretical Results: Convergence

Convergence shown for both tabular and linear function
approx. cases.

Tabular: Convergence of value function estimate to true
value function.
FA: Convergence of value function to same value as TD
with no IS would converge to.

If ∀s ∈ S, δ ≤ ε∗ ≤ 1− δ, then ε̂→ ε∗.
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Our approach REASA

Theoretical Results: Bias-variance

Mannor et al. (2007) derive equations for bias and
variance of temporal difference algorithms.
Relies on count of minimally observed transitions. Rare
events lead to loose bounds.
We can split value function into two parts, V π

F and V π
G , and

consider each independently, leading to tighter bounds.
Consequence of oversampling rare events is increased
errors in estimates of V π

F , but improvements in estimates
for V π

G are much greater.
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Experiments Random MDPs

Random MDPs: Value estimate for State 0
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One step in REASA and ASA is a single transition; one
step in TD(λ) is 2300 transitions.
Results are averaged over 70 runs.
TD(λ) exhibits high variance.
REASA and ASA converge quickly.
ASA knows and can manipulate entire trans. prob. dist.
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Experiments Network Planning Problem

Network Planning Problem: Policy Evaluation

Large state space: linear function approximation for value
function (271 binary features).
Tree network, policy upgrades links with over 90%
utilization.
Links go down approx. once per 4 years.
ε ≈ 0.00896.
Compare TD(λ) and REASA.
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Experiments Network Planning Problem

Network Planning Problem: Result

TD(λ) has much higher variance.
REASA finds optimal ε̂ ≈ 0.155, or one failure every 54
days.
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Conclusions and Future Work

Conclusions

Incorporated variance reduction techniques from
simulation literature into on-line RL algorithm.
By not treating simulator as a “black box”, we can obtain
significant improvements in performance.
Large variance reduction with modest assumptions on
simulator.
Validated empirically on large real-world problem.
Convergence guarantees and bias-variance analysis.
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Conclusions and Future Work

Future Work

Consider variance in F and G. Add UCB-like exploration.
Incorporate REASA into policy optimization algorithm (eg.
Sarsa).
Make network planning task more interesting (bigger
network, incorporate node failures, etc.).
Better bias and variance results.
Apply to more problems. Any suggestions are appreciated.
Consider other types of parameterized transition
probability distributions.
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Conclusions and Future Work
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Conclusions and Future Work

Thank You

Questions?
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