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Introduction

Problem Learn behaviors in unknown environments
Criterion Minimize number of suboptimal actions taken

Idea 1 Model-Based Reinforcement Learning
Probabilistic finite-time convergence
Efficient use of sample data
Robust exploration using model uncertainty

Idea 2 Hierarchical Reinforcement Learning
Intuitive approach to scaling to large problems
Decomposition of tasks into subtasks

Our Contribution
Integration of model-based and hierarchical RL for fully
stochastic, finite problems
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The Taxi Domain

State Variables
x coordinate
y coordinate
Passenger location
(at 1 of 4 landmarks or in the taxi)
Destination location
(at 1 of 4 landmarks)

Actions
North, South, East, West, PickUp, PutDown

P

D
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The Taxi Hierarchy

pick up

put
down

GET PUT

ROOT

north south east

pickup putdown

west

TO RED
NAVIGATE

Optimal policy
Navigate to the passenger
Pick up the passenger
Navigate to the destination
Put down the passenger

Composite actions

Set of child actions Ai

Set of terminal states T i ⊆ S
Goal rewards R̃ i : T i → R
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MAXQ Decomposition of the Value Function

Decompose value function

V i(s) = maxa Qi(s, a)
Total expected reward (for action i)
Qi(s, a) = V a(s) + C i(s, a)
Reward if i executes a first
C i(s, a) = Ek ,s′

[
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]
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The MAXQ-Q Algorithm

Overview of MAXQ-Q
Learn V for each primitive action
Learn C for each composite action
Use Q-learning-like update rules

Properties of MAXQ-Q
Facilitates state abstraction:
Different representation for each C, V
Learning proceeds bottom-up
Parameters tuned for each action
Asymptotic convergence
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Model Decomposition

MAXQ Model Decomposition
1 Learn models of primitive actions
2 Plan using existing models
3 Compute abstract model
4 Apply induction

Ra(s) = Rπa(s)(s) +
∑

s′∈S\T a

Pπa(s)(s, s′)Ra(s′)
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R-MAX Models of Primitive Actions

Maximum-likelihood estimation, given sufficient data

Ra(s) = total reward
# of transitions Pa(s, s′) = # of transitions to s′

# of transitions

Optimistic models, given insufficient data

Ra(s) = V max Pa(s, s′) = 0

pickup
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The R-MAX Algorithm

Procedure for each time step
1 Update model
2 Compute value function
3 Choose greedy action

Thorough exploration due to
initial optimism
Very large negative rewards in
exploratory episodes
High-quality policy after initial
exploration
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The R-MAXQ Algorithm

Procedure for each time step
1 Update R-MAX primitive models
2 Compute MAXQ composite models
3 Resume executing hierarchical policy

Propagates optimism up hierarchy
Memoizes models across time steps
Employs prioritized sweeping
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Experimental Setup

Environment: stochastic Taxi
MAXQ-Q

Replication of Dietterich’s original algorithm
Boltzmann exploration
Parameters from Dietterich’s implementation

R-MAX primitive models
Each state-action optimistic until sample size m = 5
Planning with value iteration until ε = 0.001

State abstraction:
MAXQ-Q: All of Dietterich’s abstractions

R-MAX: Max-node irrelevance for each primitive model
Example:
South ignores Passenger and Destination

R-MAXQ: Also max-node irrelevance for abstract models
Example: Get ignores Destination
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Empirical Results
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R-MAXQ learning curve
dominates MAXQ-Q curve
R-MAXQ converges to same
asymptote as R-MAX

R-MAXQ avoids most of the
costly exploration of R-MAX
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Eager Exploration Versus Lazy Exploration

R-MAX experiments with pickup and putdown at all 50
states reachable from the initial state.
R-MAXQ attempts pickup (putdown) at only 5 (4)
reachable states in Get (Put).
R-MAXQ never attempts putdown outside the four
landmark locations.

P P

D
putdown

pickup
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The Role of Hierarchy

Improve computational complexity (already known)
Decompose tasks into smaller subtasks

Fewer primitive actions per subtask
Explicit state abstraction at lower levels
Smaller “completion sets” of reachable states at higher
levels (related to result distribution irrelevance)

P P

pickup

D D

ROOT

GET PUT
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Summary

R-MAXQ combines R-MAX’s robust exploration with
MAXQ’s incorporation of hierarchical domain knowledge.
With regard to sample complexity, a primary role of
hierarchy may be to constrain unnecessary exploration.

Future Work
Application to larger, even continuous, domains
Guidelines for the design or discovery of hierarchies
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The Abstract Taxi Hierarchy

SouthNorth East West
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Empirical Results Without State Abstraction
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R-MAX performs slightly worse.
Navigational actions require 16
times as much data, since they
no longer ignore passenger
location and destination.
Pickup requires 4 times as
much data, since it no longer
ignores passenger destination.

R-MAXQ still benefits from never
executing putdown outside of
the four landmark locations.
MAXQ-Q performs poorly without
state abstraction.
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The Sample Complexity of R-MAXQ I

For the same threshold amount of experience per
state-action, R-MAXQ will spend no more time exploring
that R-MAX.
However, the threshold required to ensure a given level of
near-optimality may be exponentionally worse in the height
of the hierarchy.
These (weak) guarantees make no assumptions about the
quality of the hierarchy! (In the same way that the R-MAX

guarantees make no assumptions about the policy used to
transform a bound on model error into a bound on value
function error.)
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The Sample Complexity of R-MAXQ II

Theorem
If m samples of each state-action guarantee that R-MAX

converges to an ε-optimal policy with probability 1− δ, then

m′ = O
(

m
(

TL
1−δ

)2h
)

samples of each primitive state-action

suffice for R-MAXQ to converge to a recursively ε-optimal policy
with probability 1− δ.

L is O
(

log ε
1−γ

)
T is the maximum number of reachable terminal states for any

composite action
h is the height of the hierarchy
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