Hierarchical Model-Based Reinforcement Learning: R-мах + MAXQ

Nicholas K. Jong Peter Stone

Department of Computer Sciences University of Texas at Austin

International Conference on Machine Learning, 2008

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Learning with Hierarchies of Models

- Learning in Structured Environments
- MAXQ Decomposition

- R-мах Exploration
- Results

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ = 𝒴 𝔄 𝔅

Outline

MAXQ Decomposition

The R-махо Algorithm
 R-мах Exploration

Results

◆□ > ◆□ > ◆豆 > ◆豆 > 三日日 のへで

Learning in Structured Environments

Introduction

Problem Learn behaviors in unknown environments

Criterion Minimize number of suboptimal actions taken

Idea 1 Model-Based Reinforcement Learning

- Probabilistic finite-time convergence
- Efficient use of sample data
- Robust exploration using model uncertainty

Idea 2 Hierarchical Reinforcement Learning

- Intuitive approach to scaling to large problems
- Decomposition of tasks into subtasks

Our Contribution

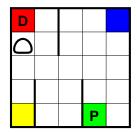
Integration of model-based and hierarchical RL for fully stochastic, finite problems

Learning in Structured Environments MAXQ Decomposition

The Taxi Domain

State Variables

- x coordinate
- y coordinate
- Passenger location (at 1 of 4 landmarks or in the taxi)
- Destination location (at 1 of 4 landmarks)



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

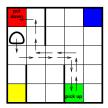
Actions

North, South, East, West, PickUp, PutDown

Summary

Learning in Structured Environments MAXQ Decomposition

The Taxi Hierarchy



Optimal policy

- Navigate to the passenger
- Pick up the passenger
- Navigate to the destination
- Put down the passenger

Composite actions

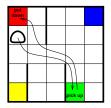
- Set of child actions Aⁱ
- Set of terminal states $T^i \subseteq S$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

• Goal rewards $\tilde{R}^i : T^i \to \mathbb{R}$

Learning in Structured Environments MAXQ Decomposition

The Taxi Hierarchy



ROOT GET PUT NAVIGATE TO RED putdown north south east west

Optimal policy

- Navigate to the passenger
- Pick up the passenger
- Navigate to the destination
- Put down the passenger

Composite actions

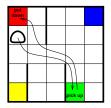
- Set of child actions Aⁱ
- Set of terminal states $T^i \subseteq S$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

• Goal rewards $\tilde{R}^i : T^i \to \mathbb{R}$

Learning in Structured Environments MAXQ Decomposition

The Taxi Hierarchy



ROOT GET PUT NAVIGATE TO RED putdown north south east west

Optimal policy

- Navigate to the passenger
- Pick up the passenger
- Navigate to the destination
- Put down the passenger

Composite actions

- Set of child actions Aⁱ
- Set of terminal states $T^i \subseteq S$
- Goal rewards $\tilde{R}^i : T^i \to \mathbb{R}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Learning with Hierarchies of Models

- Learning in Structured Environments
- MAXQ Decomposition
- The R-MAXQ Algorithm
 R-MAX Exploration
 - Results

◆□ > ◆□ > ◆豆 > ◆豆 > 三日日 のへで

Learning in Structured Environments MAXQ Decomposition

MAXQ Decomposition of the Value Function

Decompose value function

- Vⁱ(s) = max_a Qⁱ(s, a) Total expected reward (for action *i*)
 Qⁱ(s, a) = V^a(s) + Cⁱ(s, a)
 - Reward if *i* executes *a* first
- Cⁱ(s, a) = E_{k,s'} [γ^k Vⁱ(s')] Reward *i* expects after executing a

Root Get Green South

Learning in Structured Environments MAXQ Decomposition

MAXQ Decomposition of the Value Function

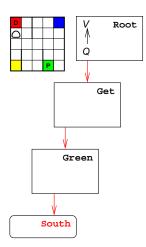
Decompose value function

1/Root

 V'(s) = max_a Q'(s, a) Total expected reward (for action *i*)
 Qⁱ(s, a) = V^a(s) + Cⁱ(s, a) Reward if *i* executes a first
 Cⁱ(s, a) = E_{k,s'} [γ^k Vⁱ(s')]

Reward *i* expects after executing *a*

(III) =
$$Q^{\text{Root}}$$
(III, Get)



Learning in Structured Environments MAXQ Decomposition

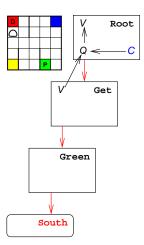
MAXQ Decomposition of the Value Function

Decompose value function

V'(s) = max_a Q'(s, a) Total expected reward (for action *i*)
Q'(s, a) = V^a(s) + Cⁱ(s, a) Reward if *i* executes *a* first
Cⁱ(s, a) = E_{k,s'} [γ^k Vⁱ(s')] Reward *i* expects after executing *a*

$$V^{\text{Root}}(\blacksquare) = Q^{\text{Root}}(\blacksquare, \text{Get})$$

= $V^{\text{Get}}(\blacksquare) + C^{\text{Root}}(\blacksquare, \text{Get})$



Learning in Structured Environments MAXQ Decomposition

MAXQ Decomposition of the Value Function

Decompose value function

Root • $V'(s) = \max_a Q'(s, a)$ Total expected reward (for action *i*) • $Q'(s, a) = V^{a}(s) + C'(s, a)$ Reward if *i* executes *a* first Get • $C^{i}(s, a) = E_{k,s'}[\gamma^{k} V^{i}(s')]$ Reward *i* expects after executing a Green $V^{\text{Root}}(\blacksquare) = Q^{\text{Root}}(\blacksquare, \text{Get})$ $= V^{\text{Get}}(\blacksquare) + C^{\text{Root}}(\blacksquare, \text{Get})$ $= V^{\text{South}(\texttt{III})} + C^{\text{Green}(\texttt{III}, \text{South})}$ South

 $+C^{\text{Get}}(\mathbb{H}, \text{Green}) + C^{\text{Root}}(\mathbb{H}, \text{Get})$

Learning in Structured Environments MAXQ Decomposition

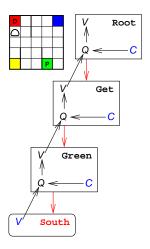
The MAXQ-Q Algorithm

Overview of MAXQ-Q

- Learn V for each primitive action
- Learn C for each composite action
- Use Q-learning-like update rules

Properties of MAXQ-Q

- Facilitates state abstraction:
 Different representation for each C, V
- Learning proceeds bottom-up
- Parameters tuned for each action
- Asymptotic convergence



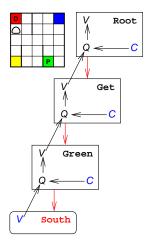
★ E ► ★ E ► E E < </p>

Learning in Structured Environments MAXQ Decomposition

Model Decomposition

MAXQ Model Decomposition

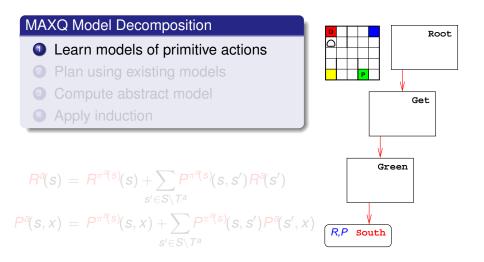
- Learn models of primitive actions
- Plan using existing models
- Compute abstract model
- Apply induction



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

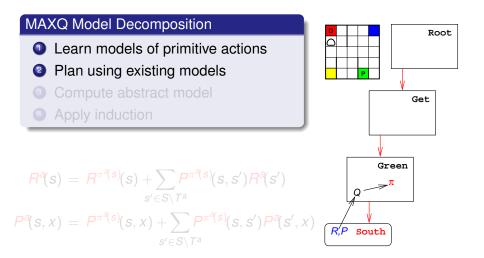
Learning in Structured Environments MAXQ Decomposition

Model Decomposition



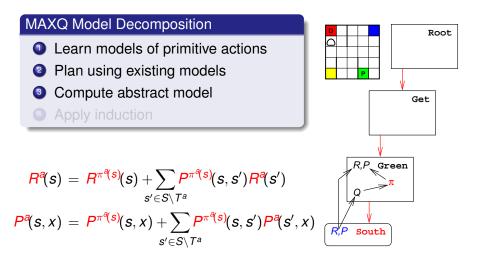
Learning in Structured Environments MAXQ Decomposition

Model Decomposition



Learning in Structured Environments MAXQ Decomposition

Model Decomposition

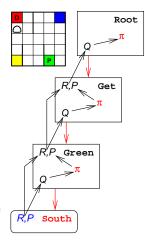


Learning in Structured Environments MAXQ Decomposition

Model Decomposition

MAXQ Model Decomposition

- Learn models of primitive actions
- Plan using existing models
- Ompute abstract model
- Apply induction



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Outline

MAXQ Decomposition

Nicholas K. Jong, Peter Stone Hierarchical Model-Based Reinforcement Learning

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

R-MAX Exploration

R-MAX Exploration Results

R-MAX Models of Primitive Actions

Maximum-likelihood estimation, given sufficient data

$$R^{a}(s) = \frac{\text{total reward}}{\# \text{ of transitions}}$$
 $P^{a}(s, s') = \frac{\# \text{ of transitions to } s'}{\# \text{ of transitions}}$

Optimistic models, given insufficient data

$$R^{a}(s) = V^{\max} P^{a}(s,s') = 0$$

◆□ > ◆□ > ◆豆 > ◆豆 > 三日日 のへで

R-MAX Exploration Results

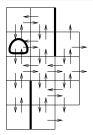
R-MAX Models of Primitive Actions

Maximum-likelihood estimation, given sufficient data

 $R^{a}(s) = \frac{\text{total reward}}{\# \text{ of transitions}}$ $P^{a}(s, s') = \frac{\# \text{ of transitions to } s'}{\# \text{ of transitions}}$

Optimistic models, given insufficient data

$$R^a(s) = V^{\max} P^a(s,s') = 0$$



<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

R-MAX Exploration Results

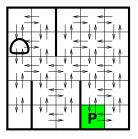
R-MAX Models of Primitive Actions

Maximum-likelihood estimation, given sufficient data

 $R^{a}(s) = \frac{\text{total reward}}{\# \text{ of transitions}}$ $P^{a}(s, s') = \frac{\# \text{ of transitions to } s'}{\# \text{ of transitions}}$

Optimistic models, given insufficient data

$$R^{a}(s) = V^{\max} P^{a}(s,s') = 0$$



<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

R-MAX Exploration Results

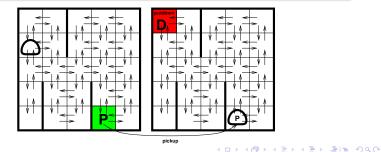
R-MAX Models of Primitive Actions

Maximum-likelihood estimation, given sufficient data

 $R^{a}(s) = \frac{\text{total reward}}{\# \text{ of transitions}}$ $P^{a}(s, s') = \frac{\# \text{ of transitions to } s'}{\# \text{ of transitions}}$

Optimistic models, given insufficient data

$$R^{a}(s) = V^{\max} P^{a}(s,s') = 0$$



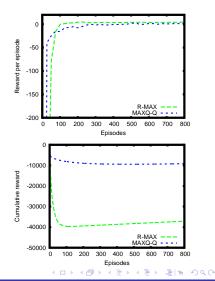
Hierarchical Model-Based Reinforcement Learning

R-MAX Exploration Results

The R-MAX Algorithm

Procedure for each time step

- Update model
- 2 Compute value function
- Ohoose greedy action
 - Thorough exploration due to initial optimism
 - Very large negative rewards in exploratory episodes
 - High-quality policy after initial exploration



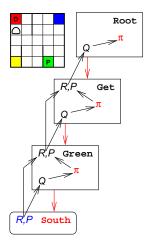
Nicholas K. Jong, Peter Stone Hierarchical Model-Based Reinforcement Learning

R-мах Exploration Results

The R-MAXQ Algorithm

Procedure for each time step

- Update R-MAX primitive models
- Compute MAXQ composite models
 - Resume executing hierarchical policy
 - Propagates optimism up hierarchy
 - Memoizes models across time steps
 - Employs prioritized sweeping



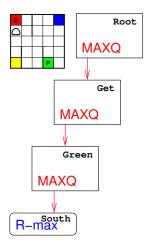
★ E ► ★ E ► E E < 2000</p>

R-MAX Exploration Results

The R-MAXQ Algorithm

Procedure for each time step

- Update R-MAX primitive models
- Compute MAXQ composite models
 - Resume executing hierarchical policy
 - Propagates optimism up hierarchy
 - Memoizes models across time steps
 - Employs prioritized sweeping



R-MAX Exploration Results

Outline

• MAXQ Decomposition

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

R-MAX Exploration Results

Experimental Setup

- Environment: stochastic Taxi
- MAXQ-Q
 - Replication of Dietterich's original algorithm
 - Boltzmann exploration
 - Parameters from Dietterich's implementation
- R-мах primitive models
 - Each state-action optimistic until sample size *m* = 5
 - Planning with value iteration until $\epsilon = 0.001$

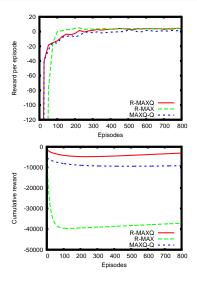
• State abstraction:

- MAXQ-Q: All of Dietterich's abstractions
 - R-MAX: *Max-node irrelevance* for each primitive model Example:
 - South **ignores** Passenger **and** Destination

R-MAXQ: Also max-node irrelevance for abstract models Example: Get ignores Destination

R-MAX Exploration Results

Empirical Results



- R-MAXQ learning curve dominates MAXQ-Q curve
- R-MAXQ converges to same asymptote as R-MAX
- R-MAXQ avoids most of the costly exploration of R-MAX

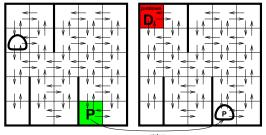
▶ < Ξ

ELE OQO

R-мах Exploratio Results

Eager Exploration Versus Lazy Exploration

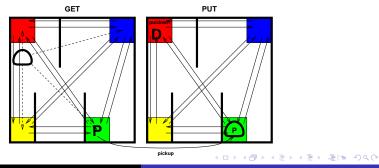
- R-MAX experiments with pickup and putdown at all 50 states reachable from the initial state.
- R-MAXQ attempts pickup (putdown) at only 5 (4) reachable states in Get (Put).
- R-MAXQ never attempts putdown outside the four landmark locations.



<□> < □> < □> < □> = □ = のへの

Eager Exploration Versus Lazy Exploration

- R-MAX experiments with pickup and putdown at all 50 states reachable from the initial state.
- R-MAXQ attempts pickup (putdown) at only 5 (4) reachable states in Get (Put).
- R-MAXQ never attempts putdown outside the four landmark locations.



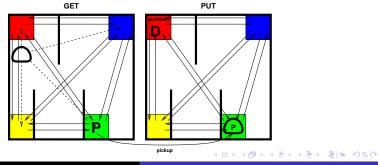
Nicholas K. Jong, Peter Stone

Hierarchical Model-Based Reinforcement Learning

R-MAX Exploratio Results

Eager Exploration Versus Lazy Exploration

- R-MAX experiments with pickup and putdown at all 50 states reachable from the initial state.
- R-MAXQ attempts pickup (putdown) at only 5 (4) reachable states in Get (Put).
- R-MAXQ never attempts putdown outside the four landmark locations.



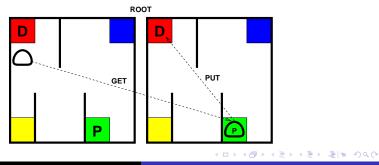
Nicholas K. Jong, Peter Stone

Hierarchical Model-Based Reinforcement Learning

R-MAX Exploration Results

The Role of Hierarchy

- Improve computational complexity (already known)
- Decompose tasks into smaller subtasks
 - Fewer primitive actions per subtask
 - Explicit state abstraction at lower levels
 - Smaller "completion sets" of reachable states at higher levels (related to *result distribution irrelevance*)



Nicholas K. Jong, Peter Stone Hierarchical Model-Based Reinforcement Learning

- R-MAXQ combines R-MAX's robust exploration with MAXQ's incorporation of hierarchical domain knowledge.
- With regard to sample complexity, a primary role of hierarchy may be to constrain unnecessary exploration.

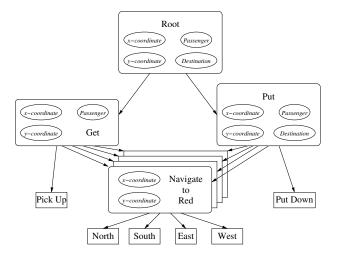
Future Work

- Application to larger, even continuous, domains
- Guidelines for the design or discovery of hierarchies

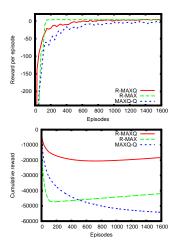
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

More on State Abstraction Theoretical Guarantees

The Abstract Taxi Hierarchy



Empirical Results Without State Abstraction



- R-MAX performs slightly worse.
 - Navigational actions require 16 times as much data, since they no longer ignore passenger location and destination.
 - Pickup requires 4 times as much data, since it no longer ignores passenger destination.
- R-MAXQ still benefits from never executing putdown outside of the four landmark locations.
- MAXQ-Q performs poorly without state abstraction.

< 토 > < 토 > 토|비 - 의 < ④

The Sample Complexity of R-махо I

- For the same threshold amount of experience per state-action, R-MAXQ will spend no more time exploring that R-MAX.
- However, the threshold required to ensure a given level of near-optimality may be exponentionally worse in the height of the hierarchy.
- These (weak) guarantees make no assumptions about the quality of the hierarchy! (In the same way that the R-MAX guarantees make no assumptions about the policy used to transform a bound on model error into a bound on value function error.)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

The Sample Complexity of R-махо II

Theorem

If m samples of each state-action guarantee that R-MAX converges to an ϵ -optimal policy with probability $1 - \delta$, then $m' = O\left(m\left(\frac{TL}{1-\delta}\right)^{2h}\right)$ samples of each primitive state-action suffice for R-MAXQ to converge to a recursively ϵ -optimal policy with probability $1 - \delta$.

- L is $O\left(\frac{\log \epsilon}{1-\gamma}\right)$
- T is the maximum number of reachable terminal states for any composite action
- h is the height of the hierarchy

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □