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Overview

Markov Decision Processes (MDPs)
Used to model sequential decision problems
Current solution techniques do not scale well with the size of the MDP
Real world problems when modeled as MDPs exhibit high degree of redundancy
Reduction in size possible if we exploit redundancy

Finding Symmetries in MDPs
We use the symmetry as a notion of redundancy as introduced in (Ravindran,
2004)
Believed to be hard however exact hardness is unknown
Intuitively, because of the additional structure of MDPs it seems harder

We show that finding symmetries in MDPs is no harder than the
problem of Graph Isomorphism (GI)

We also show the use of existing GI solvers for finding
symmetries in MDPs

Shravan M Narayanamurthy, Balaraman Ravindran On the Hardness of Finding Symmetries in Markov Decision Processes



Overview
Introduction

Symmetries in MDPs
Experiments and Results

Conclusions

Markov Decision Processes
Formal Problem Definition

Outline

1 Overview

2 Introduction
Markov Decision Processes
Formal Problem Definition

3 Symmetries in MDPs
Finding Symmetries
Exploiting Symmetries

4 Experiments and Results

5 Conclusions

Shravan M Narayanamurthy, Balaraman Ravindran On the Hardness of Finding Symmetries in Markov Decision Processes



Overview
Introduction

Symmetries in MDPs
Experiments and Results

Conclusions

Markov Decision Processes
Formal Problem Definition

Stochastic Sequential Decision Making

Markov Decision Process, M : < S,A,Ψ,P,R >
Set of States : S
Set of Actions : A
Set of Permissible Actions : Ψ ⊆ S×A
Transition Probabilities : P : Ψ×S → [0,1]
Expected Reward : R : Ψ →R

Policy, π : S → A

Value of a state s under policy π : Eπ (discounted sum of future
rewards got by following π from s)

Bellman Equation

Vπ(s) = R(s,a)+ γ ∑
s′∈S

P(s,a,s′)Vπ(s′)

where, 0 ≤ γ < 1
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Solution of an MDP

Is a policy π⋆ such that, for any policy π , Vπ⋆(s) ≥ Vπ(s), ∀s ∈ S

Bellman Optimality Equation

Vπ⋆(s) = max
a∈A

{R(s,a)+ γ ∑
s′∈S

P(s,a,s′)Vπ⋆(s′)}

Iterative algorithm using the Bellman Optimality equation
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Reduced Model - Formal definition

Definition

An MDP homomorphism from M to M ′ is a surjection h : Ψ → Ψ′

defined by h(s,a) = (f (s),gs(a)), where f : S → S′ and
gs : As → A′

f (s) are surjections satisfying,

P ′(f (s),gs(a), f (s′)) = ∑
s′′∈f−1(f (s′))

P(s,a,s′′)

R′(f (s),gs(a)) = R(s,a)

Definition

An MDP M ′ is said to be a reduced model of an MDP M , iff there
exists an MDP homomorphism h : M → M ′.
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Reduced Model - Significance

Reduced Model:
Preserves dynamics by definition
Preserves optimal value functions and policies
Functionally equivalent to the original model but significantly
smaller
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Symmetry informally

A symmetric system is one that is invariant under certain
transformation onto itself.

This gridworld is invariant under reflection along diagonal
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Symmetry Formal Definition

Definition

A bijective MDP homomorphism from M to M is called an MDP
automorphism which represents a symmetry. We have,

P(f (s),gs(a), f (s′)) = P(s,a,s′)

R(f (s),gs(a)) = R(s,a)

Definition

The set of all automorphisms of an MDP, M , form a group under
composition called the automorphism group of M , represented as
AutM . The orbits of the natural action of any subgroup G on M (Ψ)
defines a partition BG of Ψ using which a quotient MDP M /BG , called
the G -Reduced Image can be defined.
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Problem

Given an MDP M

1 Find AutM
2 Find AutM -Reduced Image IJCAI 07
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Problem Simplification

Given an MDP M , find AutM

A group is completely specified by its generators

AMGEN(M ): Find generators of AutM
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Isomorphism Completeness

Definition

A is Isomorphism Complete iff A is polynomially equivalent to finding
Graph Isomorphisms

Definition

A is polynomially equivalent to B iff A is polynomially reducible(∝) to B
and B ∝ A, denoted A ≡∝ B
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List of relevant Isomorphism Complete Problems

ISO(G1,G2): Isomorphism recognition for G1 and G2, where G1

and G2 are simple

IMAP(G1,G2): Isomorphism Map from G1 to G2(if it exists),
where G1 and G2 are simple

AGEN(G): Generators of the automorphism group, AutG, where
G is simple

DGEN(G): Generators of the automorphism group, AutG, where
G is a digraph

So, DGEN(G) ≡∝ AGEN(G)≡∝ IMAP(G1,G2) ≡∝ ISO(G1,G2)
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1 Pose AMGEN(M ) as a problem on weighted pseudographs
2 Prove that AMGEN(M ) ≡∝ DGEN(G)

DGEN(G) ∝ AMGEN(M ) (trivial)
AMGEN(M ) ∝ DGEN(G)

3 Hence, AMGEN(M ) is Isomorphism Complete
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Set Bijections

1 A generator of AutM has 2 components:
A function f that permutes the states
A set of functions {gu} that permute the actions called the
State-Dependent Action Recoding (SDAR) functions.

2 Solution to DGEN(G) accounts only for f

3 Factorially many SDAR functions in the worst case, rendering
explicit representations useless

4 To obtain the SDAR functions, we define the notion of a set
bijection

5 Represents a set of bijections compactly

6 Polynomially computable operations of intersection, composition
and inverse
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Set Bijections example

For example, the following set of bijections from A = {1,2,3,4} to
B = {N,E ,W ,S}

1 → N, 2 → E, 3 → W, 4 → S
1 → N, 2 → E, 3 → S, 4 → W
1 → E, 2 → N, 3 → W, 4 → S
1 → E, 2 → N, 3 → S, 4 → W

can be represented compactly using a set bijection , X1, from
U1

A = {{1,2},{3,4}} to U1
B = {{N,E},{W ,S}} as follows:

X1({1,2}) = {N,E}

X1({3,4}) = {W ,S}
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An example
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Finding State Dependent Action
Recoding Functions
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u
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) over all v
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Construction provides the Generators of AutM
Outline of the proof

1 Prove that AutM can be partitioned into {< f ,{Gu} >}.

2 Define a group homomorphism φ : AutM → AutWG.

3 Prove that AutM as partitioned above represents the set of all
cosets of the kernel, ker(φ).

4 Since, the kernel is a normal subgroup, we know that,
AutM /ker(φ) � im(φ).

5 Using the isomorphism, prove that the set {< f ,{Gu} >} found
using the above procedure is the set of generators of AutM .

Shravan M Narayanamurthy, Balaraman Ravindran On the Hardness of Finding Symmetries in Markov Decision Processes



Overview
Introduction

Symmetries in MDPs
Experiments and Results

Conclusions

Finding Symmetries
Exploiting Symmetries

Significance

1 Theoretically significant

2 Allows the use of off-the-shelf Graph Isomorphism solvers to find
symmetries on MDPs.
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Nauty - No Automorphisms, Yes?

Solves DGEN
Worst case complexity is exponential
On avg on a graph of n vertices takes n2 time

Uses backtracking and a refinement procedure to find the
canonical labelings

Allows the use of a variety of vertex invariants to solve harder
problems
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Nauty Integration
Procedure

1 Construct the weighted pesudograph from the given MDP

2 Construct the weighted digraph using the above procedure

3 Construct a simple digraph from the weighted digraph using
standard procedure

4 Get the generators of the digraph using Nauty

5 Use set bijections to find state-dependent action recoding
functions for each generator

6 Generate the partition of |Ψ| induced by the group generated by
the above functions

7 Use the partition to construct a reduced model and follow explicit
model minimization
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G -Reduced Image Algorithm IJCAI 07

Given an MDP M and a Symmetry Group G , finds the reduced
model M ’ induced by G

Straightforward way by explicit enumeration takes |Ψ|× |G |

Breadth First Search with pruning

Terminates when at least one representative from each
equivalence class of G has been examined

With certain assumptions time complexity is O(|Ψ′|× |G |)
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Experimental Setup - Probabilistic GridWorld

States: An N ×N GridWorld

Actions: Four probabilistic actions of going UP, DOWN, RIGHT
and LEFT having a 90% success probability

Initial state: (0,0)

Goal states: {(0,N −1),(N −1,0)}.
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Experimental Setup - GridWorld Soccer

Slightly modified version of that described in (Bowling, 2003) with
an M ×N grid with two agents (Attacker-A and Defender-B)

States: The non-identical positions of the attacker and the
defender leading to (MN)2 − (MN) states

Actions: The four compass directions: N, E, W, S and the hold
action H

Goal States: W action from the squares in front of the goal
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Results - Probabilistic GridWorld
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Value Iteration with Explicit Model Minimization on the Probabilistic GridWorld

 

 

No Reduction

Without 2−reduction time

Without 4−reduction time

With 2−reduction time

With 4−reduction time

Nauty + 4−reduction time

Able to find the partition corresponding to the symmetry group

For a grid of size N ×N, states (x,y), (y,x), (N-1-x,N-1-y) and
(N-1-y,N-1-x) are equivalent
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Results - GridWorld Soccer

1 1.5 2 2.5 3 3.5 4
0

2000

4000

6000

8000

10000

12000

Size of the Gridworld

Ti
m

e 
in 

m
illi

 m
ins

Value Iteration with Explicit Model Minimization on the GridWorld Soccer domain
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Nauty + 2−reduction time

Intuition gets it wrong; domain is not symmetric!

The algorithm also finds another interesting symmetry due to the
existence of the hold action.
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Summary

In this work, we have provided a constructive proof for the
Isomorphism Completeness of the problem of finding symmetries.

We have also proposed the use of this constructive proof along
with an efficient minimization algorithm to solve an MDP using
symmetries and demonstrated it empirically.

We are looking at adapting approximation algorithms for finding
graph isomorphisms to finding approximate symmetries in MDPs.
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Thank You!
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G− Reduced Image Algorithm
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