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Overview

Overview

@ Markov Decision Processes (MDPSs)
@ Used to model sequential decision problems
@ Current solution techniques do not scale well with the size of the MDP
@ Real world problems when modeled as MDPs exhibit high degree of redundancy
@ Reduction in size possible if we exploit redundancy
@ Finding Symmetries in MDPs

@ We use the symmetry as a notion of redundancy as introduced in (Ravindran,
2004)

@ Believed to be hard however exact hardness is unknown

@ Intuitively, because of the additional structure of MDPs it seems harder

@ We show that finding symmetries in MDPs is no harder than the
problem of Graph Isomorphism (Gl)

@ We also show the use of existing Gl solvers for finding
symmetries in MDPs
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Formal Problem Definition

Stochastic Sequential Decision Making

@ Markov Decision Process, .#: < S,A,V,P,R >
o Setof States: S
@ Setof Actions : A
@ Set of Permissible Actions : W C S x A
o Transition Probabilities: P : W x S — [0,1]
o Expected Reward: R: V¥ — R
@ Policy, m: S — A

@ Value of a state s under policy 77: E(discounted sum of future
rewards got by following 7T from s)

@ Bellman Equation

Vn(s) = R(s,a)+y H P(s,as)Vq(s)
s'eS
where, 0 <y<1
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Formal Problem Definition

Solution of an MDP

@ Is a policy 17° such that, for any policy 7T, V< (s) > Vr(s), Vs € S

@ Bellman Optimality Equation

Vi(s) = TQI{R(S’a)""yZP(S’a’S,)VW(S/)}

@ lterative algorithm using the Bellman Optimality equation
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Markov Decision Processes
Formal Problem Definition

Reduced Model - Formal definition

Definition

An MDP homomorphism from .#to .# is a surjection h : ¥ — W’
defined by h(s,a) = (f(s),gs(a)), where f : S — S’ and
gs : As — M(S) are surjections satisfying,

P'(f(s),0s(a),f(s")) = > P(s,as”
s”ef~1(f(s"))

R'(f(s),0s(a)) = R(s,a)

Definition

An MDP .#" is said to be a reduced model of an MDP .Z, iff there
exists an MDP homomorphism h: .#Z — .#’.
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Reduced Model - Significance

@ Reduced Model:

@ Preserves dynamics by definition

@ Preserves optimal value functions and policies

@ Functionally equivalent to the original model but significantly
smaller
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Symmetry informally

@ A symmetric system is one that is invariant under certain
transformation onto itself.

@ This gridworld is invariant under reflection along diagonal

Bt

W E
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Symmetry Formal Definition

A bijective MDP homomaorphism from .#to .#is called an MDP
automorphism which represents a symmetry. We have,

P(f(s),0s(a),f(s")) = P(s,as’)
R(f(s).0s(a)) = R(s,a)

| A\

Definition

The set of all automorphisms of an MDP, .#, form a group under
composition called the automorphism group of .#, represented as
Aut.Z . The orbits of the natural action of any subgroup ¢ on .Z (V)
defines a partition By of W using which a quotient MDP .# /By, called
the ¢-Reduced Image can be defined.

o
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Problem

@ Given an MDP .#

@ Find Aut.Z
@ Find Aut.#-Reduced Image 1JCAI 07
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Problem Simplification

@ Given an MDP ./Z, find Aut.Z
@ A group is completely specified by its generators
@ AMGEN(.Z): Find generators of Aut.Z
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Isomorphism Completeness

A is Isomorphism Complete iff A is polynomially equivalent to finding
Graph Isomorphisms

Definition
A is polynomially equivalent to B iff A is polynomially reducible([]) to B
and B 0 A, denoted A= B
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List of relevant Isomorphism Complete Problems

@ ISO(Gy,G3): Isomorphism recognition for G; and G,, where G;
and G, are simple

@ IMAP(Gy,G;): Isomorphism Map from G; to G(if it exists),
where G; and G, are simple

@ AGEN(G): Generators of the automorphism group, AutG, where
G is simple

@ DGEN(G): Generators of the automorphism group, AutG, where
G is a digraph

@ So, DGEN(G) =g AGEN(G) =p IMAP(G4,G,) =0 I1SO(Gy,G3)
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Outline

© Pose AMGEN(.#) as a problem on weighted pseudographs
@ Prove that AMGEN(.#') = DGEN(G)

o DGEN(G) [0 AMGEN(.#) (trivial)

o AMGEN(.#) 0 DGEN(G)

© Hence, AMGEN(.#) is Isomorphism Complete
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Set Bijections

© A generator of Aut./ has 2 components:

@ A function f that permutes the states
o A set of functions {gy } that permute the actions called the
State-Dependent Action Recoding (SDAR) functions.

Solution to DGEN(G) accounts only for f

Factorially many SDAR functions in the worst case, rendering
explicit representations useless

To obtain the SDAR functions, we define the notion of a set
bijection

Represents a set of bijections compactly

©06 © 060

Polynomially computable operations of intersection, composition
and inverse
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Set Bijections example

For example, the following set of bijections from A = {1,2,3,4} to
B={N,E,W,S}

1—-N, 2—E 3—W 4—S
1—-N, 2—E 3—S 4—W
1—E, 2—N, 3—W 4—-5S
1—E 2—N, 3—S 4—W

can be represented compactly using a set bijection , X, from
Uz = {{1,2},{3,4}} to U3 = {{N,E},{W,S}} as follows:

X1({1,2}) = {N,E}

X1({3,4}) = {W,s}
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Symmetries in MDPs

An example

MDP as PseudoGraph
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An example

Vector Weighted Graph

Vector label: NE,W,S.
Discarded as it is same for

each edge
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An example

Weighted DiGraph (WG)
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Symmetries in MDPs

An example

Finding State Dependent Action
Recoding Functions
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Construction provides the Generators of Aut.Z

Outline of the proof

o
Q
Q
o
o

Prove that Aut.# can be partitioned into {< f,{G,} >}.
Define a group homomorphism @ : Aut.Z — AutWG.

Prove that Aut.# as partitioned above represents the set of all
cosets of the kernel, ker (¢).

Since, the kernel is a normal subgroup, we know that,

Aut.Z /ker (@) = im(@).

Using the isomorphism, prove that the set {< f,{G,} >} found
using the above procedure is the set of generators of Aut.Z.
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Significance

© Theoretically significant

@ Allows the use of off-the-shelf Graph Isomorphism solvers to find
symmetries on MDPs.
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Nauty - No Automorphisms, Yes?

@ Solves DGEN

@ Worst case complexity is exponential
@ On avg on a graph of n vertices takes n? time

@ Uses backtracking and a refinement procedure to find the
canonical labelings

@ Allows the use of a variety of vertex invariants to solve harder
problems
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Nauty Integration

Procedure

o
Q
Q
o
o
o
Q

Construct the weighted pesudograph from the given MDP
Construct the weighted digraph using the above procedure

Construct a simple digraph from the weighted digraph using
standard procedure

Get the generators of the digraph using Nauty

Use set bijections to find state-dependent action recoding
functions for each generator

Generate the partition of |W| induced by the group generated by
the above functions

Use the partition to construct a reduced model and follow explicit
model minimization
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%-Reduced Image Algorithm el o7

@ Given an MDP .# and a Symmetry Group ¥, finds the reduced
model .#" induced by ¢

@ Straightforward way by explicit enumeration takes |W| x |¢|
@ Breadth First Search with pruning

@ Terminates when at least one representative from each
equivalence class of ¢ has been examined

@ With certain assumptions time complexity is O(|V'| x |¥4])
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Experiments and Results

Experimental Setup - Probabilistic GridWorld

@ States: An N x N GridWorld

@ Actions: Four probabilistic actions of going UP, DOWN, RIGHT
and LEFT having a 90% success probability

@ Initial state: (0,0)
@ Goal states: {(0,N —1),(N —1,0)}.
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Experimental Setup - GridWorld Soccer

@ Slightly modified version of that described in (Bowling, 2003) with
an M x N grid with two agents (Attacker-A and Defender-B)

@ States: The non-identical positions of the attacker and the
defender leading to (MN)? — (MN) states

@ Actions: The four compass directions: N, E, W, S and the hold
action H

@ Goal States: W action from the squares in front of the goal

@

B
5] i

B

W
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Results - Probabilistic GridWorld

Value Iteration with Explicit Model Minimization on the Probabilistic GridWorld

With 2-reducton Tme
With 4-reduction time

20l == — Nauly + 4-reduction ime]

Time in sec

@ Able to find the partition corresponding to the symmetry group

@ For a grid of size N x N, states (x,y), (y,X), (N-1-x,N-1-y) and
(N-1-y,N-1-x) are equivalent
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Results - GridWorld Soccer

Value Iteration with Explicit Model Minimization on the GridWorld Soccer domain
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4000
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Y 15 B 25
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@ Intuition gets it wrong; domain is not symmetric!

@ The algorithm also finds another interesting symmetry due to the
existence of the hold action.
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Conclusions

Summary

@ In this work, we have provided a constructive proof for the
Isomorphism Completeness of the problem of finding symmetries.

@ We have also proposed the use of this constructive proof along
with an efficient minimization algorithm to solve an MDP using
symmetries and demonstrated it empirically.

@ We are looking at adapting approximation algorithms for finding
graph isomorphisms to finding approximate symmetries in MDPs.
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Thank You!
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Conclusions

¢ — Reduced Image Algorithm

01 Given M = (5 A, W,P,R) and G < AutM,
02 Construct M/Bg = (5§, A", W, I, R").

03 Set Que to some initial state {sg}, " « {[so}
04 While Que is non-empty

05 s5=dequeue{Que}

06 Forallee A

07 If (s,a) 2g (&', a") forany (s',a’) € V', then
08 W — U U (5,a)

09 A" —A'Ua

10 R’(s,a) = R(s,a)

11 For allt € S such that P(s,a,4) > 0

12 Ift=gs ¢, for somes’ € &,

13 P'(s,a,8") «— P'(s,a,5)+ P(s,a,t)
14 else

15 5 — S Ut

16 P'(s,a,t) = P(s,a,t)

17 add t to Que
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