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Transfer in Reinforcement Learning

Assumption: Different tasks are somehow related

Goal: Develop algorithms to find and exploit this
relatedness in order to improve the learning performance

How: Retain knowledge from a set of tasks and transfer
it to new different tasks
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Transfer in Reinforcement Learning

State of the Art

What can be transferred?

Solutions: value functions [Taylor et al., 2005],
policies [Torrey et al., 2006] [Taylor et al., 2007][Madden & Howley, 2004]

Structure: options
[Konidaris & Barto, 2007][Şimşek et al., 2005][Perkins & Precup, 1999],
hierarchical decomposition [Mehta et al., 2005], MDP
abstraction [Walsh et al., 2006]

Experience: samples 〈s, a, s′, r〉 [Taylor et al., 2008]
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The Goal

Fact: In batch RL algorithms, the set of samples used to
feed the learning algorithm influences the performance

Goal: Transfer samples coming from other (source) tasks
in order to improve the performance in a target task

Problem: Avoid negative transfer
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The Scenario

T

Task Space

Ω
Task Distribution

All the tasks share the same state-action space.

Lazaric, Restelli, Bonarini Transfer of Samples in Batch Reinforcement Learning



Introduction
Transfer of Samples in Batch Reinforcement Learning

Experimental Results
Summary

The Scenario
The Implementation

The Scenario

S1

σj

T

σj

Sn

· · ·

Task Space

Ω
Task Distribution

m samples each

Lazaric, Restelli, Bonarini Transfer of Samples in Batch Reinforcement Learning



Introduction
Transfer of Samples in Batch Reinforcement Learning

Experimental Results
Summary

The Scenario
The Implementation

The Scenario

S1

σj

T

σj

Sn

· · ·

T

τi

t ≪ m samples

Task Space

Ω
Task Distribution

m samples each

Lazaric, Restelli, Bonarini Transfer of Samples in Batch Reinforcement Learning



Introduction
Transfer of Samples in Batch Reinforcement Learning

Experimental Results
Summary

The Scenario
The Implementation

Outline

1 Introduction
Transfer in Reinforcement Learning

2 Transfer of Samples in Batch Reinforcement Learning
The Scenario
The Implementation

3 Experimental Results
The Boat Problem
Results

4 Summary
Conclusions & Future Works

Lazaric, Restelli, Bonarini Transfer of Samples in Batch Reinforcement Learning



Introduction
Transfer of Samples in Batch Reinforcement Learning

Experimental Results
Summary

The Scenario
The Implementation

Task Compliance

Which tasks is it convenient to transfer from?

We compute the avarage probability of each source task
S to be the model from which the target samples
(τi = 〈si , ai , s′

i , ri〉) are generated, that is its compliance to
the target task

P (S|τi) ∝ P (τi |S) P (S)

= PS(s′

i |si , ai)RS(ri |si , ai)P (S)
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Continuous Model Approximation

P(τi |S) =?

We follow the kernel-based approximation
proposed in [Jong & Stone, 2007]

Given kernel function ϕ(·),
σj = 〈sj , aj , s′

j , rj〉 ∈ Ŝ

PbS(s′

i |si , ai) ∝
m∑

j=1

wj · ϕ

(
d(s′

i , si + (s′

j − sj))

δs′

i

)

with weights wj computed according to
distance in the state-action space

σj

S
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TŜ

λi = P (τi|Ŝ)
P

Ŝ

R
Ŝ
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Ŝ

P
Ŝ

R
Ŝ

λ1 = P (τ1|Ŝ)

λ2 = P (τ2|Ŝ)

λt = P (τt|Ŝ)
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Task Compliance

τi

T

· · ·

Ŝ

P
Ŝ

R
Ŝ

λ1 = P (τ1|Ŝ)

λ2 = P (τ2|Ŝ)

λt = P (τt|Ŝ)

Definition

Given the target samples T̂ and the source samples Ŝ, the task
compliance of S is

Λ =
1
t

t∑

i=1

λiP(S)
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Source Tasks

Task T
S1

S2

S3

Task Compliance

Λ1

Λ3

Λ2

Target
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Sample Relevance

Which samples are worth transferring?

Also in highly compliant source tasks there may be regions
where samples are much dissimilar from target samples
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Sample Relevance

Given a source sample σj ∈ Ŝ and a model approximation
of the target task T̂

Source sample compliance (normalized over all source
samples): λj = P(σj |T̂ )

Unreliability of approximation T̂ at σj : dj

Lazaric, Restelli, Bonarini Transfer of Samples in Batch Reinforcement Learning



Introduction
Transfer of Samples in Batch Reinforcement Learning

Experimental Results
Summary

The Scenario
The Implementation

Sample Relevance

Given a source sample σj ∈ Ŝ and a model approximation
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Sample Relevance

Definition

The relevance of σj is defined as

ρj = ρ(λj , dj) = exp


−

(
λj − 1

dj

)2

 .

Transfer σj whenever

high probability to be generated by the target task (high λj )

poor approximation (few samples) of T̂ near σj (high dj )
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The Boat Problem

State: position x , y

Action: rudder angle

Reward: positive in the
goal zone, negative out of
boundaries and in the sand
banks, zero elsewhere

Dynamics: non-linear
stochastic

Target Task
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sandbank1

G1
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The Boat Problem

Hand-coded source tasks, see the paper for results with randomly generated tasks

Source Task S1
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Additional goal, no sandbank2
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Source Task S2

 0

 50

 100

 150

 200

 0  50  100  150  200

fc=-0.5

G2

Different goal, sandbanks and current

Lazaric, Restelli, Bonarini Transfer of Samples in Batch Reinforcement Learning



Introduction
Transfer of Samples in Batch Reinforcement Learning

Experimental Results
Summary

The Boat Problem
Results

Outline

1 Introduction
Transfer in Reinforcement Learning

2 Transfer of Samples in Batch Reinforcement Learning
The Scenario
The Implementation

3 Experimental Results
The Boat Problem
Results

4 Summary
Conclusions & Future Works

Lazaric, Restelli, Bonarini Transfer of Samples in Batch Reinforcement Learning



Introduction
Transfer of Samples in Batch Reinforcement Learning

Experimental Results
Summary

The Boat Problem
Results

Transfer from S1 and S2 to T

FQI with Extra Randomized Trees
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Transfer from S1 and S2 to T

Transfer of samples at random
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Transfer from S1 and S2 to T

Most of the samples in Ŝ2 are
completely different from
samples in T̂

Normalized compliance
Λ1 = 0.93 ± 0.09,
Λ2 = 0.07 ± 0.06
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Transfer of samples proportionally to task compliance
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Not all the samples from S1 are
worth transferring

Avoid transferring samples in the
region of sandbank2 and G2
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Not all the samples from S1 are
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region of sandbank2 and G2
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Transfer from S1 and S2 to T

Transfer of samples proportionally to task compliance and
sample relevance
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Conclusions

Pros:

No need to solve the source tasks

More effective than transferring policies

Works in any transfer scenario and with any batch RL
algorithm

Performance improvement even when few target
samples available
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Conclusions

Cons/Future works:

How compliance and relevance are related to performance
loss? (Define the MDP obtained by compliance/relevance transfer, measure

its distance from the target MDP and bound the loss)

Tasks must share exactly the same state-action space
(inter-task mapping by [Taylor et al., 2007])

Other measures of task similarity (e.g., [Ferns et al., 2004])

What about continuously changing tasks? (Tracking changes by

reusing samples [Sutton et al., 2007])
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Preliminary version of the software available at:
http://home.dei.polimi.it/lazaric/?Software

Thank you!

Any question?
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Sample Relevance

Definition

Given a source sample σj ∈ Ŝ, its compliance λj and its
average distance dj from target samples, the relevance of σj is
defined as

ρj = ρ(λj , dj) = exp


−

(
λj − 1

dj

)2

 ,

where λj is the compliance normalized over all the samples in

Ŝ.
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Sample Relevance
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