

Combining Fact and Document Retrieval with Spreading Activation for Semantic Desktop Search

Kinga Schumacher, Michael Sintek and Leo Sauermann

{firstname.surname}@dfki.de

German Research Center for Artificial Intelligence (DFKI GmbH)

Kinga Schumacher – 5th European Semantic Web Conference – June 4th, 2008

- Semantic Desktop
- Semantic Search research areas
- Our approach
- Evaluation
- Future work

- Means for Personal Information Management
- RDF, RDFS, identification of resources by URIs
- Instead of a document- and application-oriented information management, the Semantic Desktop enables the user to
 - create own categorization system of projects, persons, topics, events, locations, organizations etc.
 - integrate all resources (e.g. text-documents, contacts, messages, multimedia) across application borders
 - collect facts about them
 - annotate, classify and relate them building the Personal Information
 Model (PIMO)

The Semantic Desktop

> Supports the user with

- Keeping: handling of information storage – concepts are associated with folders
- Finding: by navigational search, browsing, filtering, semantic search

Information – the knowledge base

- Structured and unstructured: facts and documents
 - native structures (file system, email folders) are mapped to ontological concept
 - files and other information objects like contacts, calendar entries are mapped to instances
 - their textual content is indexed
- ➢ in ontologies, instance base and document-index

Human Access

Search for Information: documents and facts

"phone number of the KM-Group secretary"

+49 631 205 75 101

- Enable Free-text queries
 - to keep knowledge overhead away from the user
 - NLP problems, e.g. syntactic, structural ambiguity

Architecture

Fact Retrieval – Triple-based approach

- 1. Syntactic Matching: query $\{t_1, t_2, ..., t_n\}$
 - linguistic information in the knowledge base
 - n-gram method
 - phrase matching

Result: set of potential Properties P_i , Instances i_j , Classes c_k

2. Semantic Matching on the instance base (based on [1])

1st level: create and apply query templates with the matches adjacent terms $(i_j, p_i, ?), (i_j, ?, c_k), (?, p_i, ?), ...$

- 2nd level:
 - iterate over found triples and the syntactic matches of until now semantically unmatched terms and create and apply query templates
 - stop when: all query terms are included or no further triples can be found

3rd level:

Combine found triples and identify result graphs (coherent subgraphs)

 D.E. Goldschmidt, M. Krishnamoorthy: Architecting a Search Engine for the Semantic Web. C&O-2005, Pittsburgh

Fact Retrieval Example

Kinga Schumacher – 5th European Semantic Web Conference – June 4th, 2008

10

Fact Retrieval – Triple-based approach

Results

Ranking

- 1. Syntactic Matching: n-gram weights $w(p_i), w(i_j), w(c_k)$
- 2. Semantic Matching:

1st level:

$$rank(< p_i>) = w(p_i) + w(i_j)$$

2nd level:

$$rank(triple_set) = \sum (p_i) + \sum w(i_j) + \sum w(c_k),$$

where p_i, i_j, c_k are included in the triples

3rd level:

rank(subgraph) =
rank(triple_set)/number_of_query_terms

Semantic Document Retrieval – Graph traversing

- Expanded query: expanded with the linguistic information about the matched ontological elements
- Semantic Document Retrieval
 - 1. Keyword search on the document index (Lucene)
 - 2. Apply Spreading Activation:
 - Activation points: found documents
 - Activation weights: document weights
 - Formula: $I_j = \sum_i O_i w_{ij} (1-\alpha)$

Combined approach

Data and method

- Standardized and annotated test data set for semantic desktop missing
- Evaluated with the ESWC 2007 knowledge base
- Knowledge base extended with some synonyms
- Evaluated against the Google Site search on <u>www.eswc2007.org</u>
- Set of 11 queries typical queries of knowledge workers
- Average Precision (for details see Proceedings, pp 569-583)

	Semantic Desktop Search	Google Site Search	
Average Precision	0.9436	0.4615	

- ✓ precise results for complex queries
- \checkmark recognition of phrases, synonyms
- ✓ resolving structural ambiguity

Lower precision by unsuitable long queries (if no properties matched: spreading activation propagates to all connected nodes with the same intensity)

- ✓ enhanced ranking
- ✓ usef need of more specific and personalized setup of infor the semantic network's link weights -learn from feedback
 - -exploit context

- Gold Standard for Semantic (Desktop) Search Evaluations (in progress)
- Application of named graphs and views (based on the Nepomuk Representation Language NRL)
- Advanced GUI with dynamic filters and browsing support

Thanks for the members of the DFKI KM-Group

Semantic Desktop Tools

Extract of a PIMO

http://www.landesvertretung.bremen.de/landesv/bevoll/index.html

Kinga Schumacher – 5th European Semantic Web Conference – June 4th, 2008

> decompose a string in a subsequences of n characters

```
,basic': ,ba', ,as', ,si', ,ic'
```

```
,base': ,ba', ,as', ,se'
```

map the decomposition to a vector containing the number of occurrences of the n-grams

	ba	as	si	ic	se
basic	1	1	1	1	0
base	1	1	0	0	1

compute the distance of the vectors e.g. Dice-Measure d('basic','base')= 0.571

