

APEX 数据和知识管理实验室 APEX Data & Knowledge Management Lab

Q2Semantic: A Lightweight Keyword Interface to Semantic Search

Haofen Wang¹, Kang Zhang¹, Qiaoling Liu¹, Thanh Tran², and Yong Yu¹

¹ Apex Lab, Shanghai Jiao Tong University

² Institute AIFB, University Karlsruhe, Germany

Agenda

- Introduction
- Q2Semantic
 - Workflow
 - Data Pre-Processing
 - Query Interpretation
 - Query Ranking
- Experiments
- Demo
- Conclusions and Future Work

Introduction

- Semantic Web can be seen as an ever growing web of structured and interlinked data
 - Large repositories of such data are available in RDF (DBpedia, TAP, DBLP and etc.)
 - Increasing available of these semantic data offers opportunities for semantic search engines to support more expressive queries
- Query interface in semantic search engines
 - Formal query interface (e.g. SPARQL) is supported in current semantic search engines
 - Natural language query interface as one solution
 - keyword query interface is the most popular one (our focus)

Information need Find specifications about "SVG" whose author's name is "Capin"

```
The SPARQL query

PREFIX tap: <a href="http://tap.stanford.edu/tap#">http://tap.stanford.edu/tap#</a>

SELECT ?spec

WHERE {
    ?spec tap:hasAuthor ?person.
    ?spec tap:label "SVG".
    ?person tap:name "Capin".
}
```

Introduction (cont'd)

- Many studies have been carried out to bridge the gap between keyword queries and formal queries
 - Keyword interfaces for DB or XML
 - Keyword Interfaces for semantic search engines
- Challenges
 - How to deal with keyword phrases which are expressed in the user's own words which do not appear in the RDF data?
 - How to find the relevant query when keywords are ambiguous (ranking)?
 - How to return the relevant queries as quickly as possible (scalability)?

Our Contributions

- We leverage terms extracted from Wikipedia to enrich literals described in the original RDF data.
- We adopt several mechanisms for query ranking, which can consider many relevant factors.
- We propose a novel graph data structure called clustered graph and an exploration algorithm.
- Additionally, the exploration algorithm also allows for the construction of the top-k queries.

Workflow of Q2Semantic

- Input: a keyword query K composed of keyword phrases $\{k_1, k_2, ..., k_n\}$.
- Search Process
 - Phrase Mapping
 - Query Construction and Ranking
- Index Process
 - Mapping, Clustering and Indexing
- Output: a formal query F as a tree of the form $\langle r, \{p_1, p_2, ..., p_n\} \rangle$, where r is the root node of F and p_i is a path in F.
- In our example, K includes k_1 = "Capin" and k_2 = "SVG", and F = < r, $\{p_1, p_2\} >$, where r = W3CSpecification, p_1 = < x1, label, SVG> and p_2 = < x1, hasAuthor, x2, name, Capin>.

Data Pre-Processing in Q2Semantic

Four rules for mapping from RDF graph to RACK graph

-Every instance of the RDF graph is mapped to a *C-Node* labeled by the concept name that the Two C-Nodes are clustered to one if they have the same label.

-Two P-Edges are clustered.

R-Edges are clustered to one if they have the same label and connect the same pair of C-Nodes. attribute value is mapped to a k-Node labeled by the value literal.

-Two A-Edges are clustered to one if they have the same label and connected to the same C-Node.
-Every relation is mapped to a *R-Edge* that is labeled by the relation name and connects two C-Two K-Nodes are clustered to one if they are connected to the same A-Edge. The resulting node Nodes.

inherits the labels of both these K-Nodes. -Every attribute is mapped to an A-Eage that is labeled by the attribute name and connects a C-Node with a K-Node.

Query Interpretation in Q2Semantic

- Phrase Mapping
- Query Construction
 - Thread Expansion (*T-Expansion*)
 - Cursor Expansion (*C-Expansion*)
 - Two strategies for expansion
 - Intra-Thread Strategy
 - Inter-Thread Strategy
 - Optimization for Top-k
 Termination
 - Optimization for Repeated Expansion

Query Ranking in Q2Semantic

Path only

$$R_1 = \sum_{1 \le i \le n} (\sum_{e \in p_i} 1)$$

Adding matching relevance

$$R_2 = \sum_{1 \le i \le n} \left(\frac{1}{D_i} \sum_{e \in p_i} 1\right)$$

Adding importance of edges and nodes

$$R_3 = cost_r \sum_{1 \le i \le n} \left(\frac{1}{D_i} \sum_{e \in p_i} cost_e\right)$$

$$cost_{node} = 2 - \log_2(\frac{|node|}{N} + 1)$$

$$cost_{edge} = 2 - \log_2(\frac{|edge|}{M} + 1)$$

Experiment Setup

TAP (220K triples)

Query	Keywords	Potential information need			
Q3	Supergirl	Who is called "supergirl"			
Q5	Strip, Las Vegas	Vegas What is the well-known "Strip" in Las Vegas			
Q9	Web Accessibility Initiative, www- rdf-perllib	Find persons who work for Web Accessibility Initiative and involve in the activity with mailing list "www-rdf-perllib"			

- DBLP (26M triples)
 - 100 valid queries by combining literals from different attributes (from one to three keywords)
- LUBM(1,0), LUBM(20,0) and LUBM(50,0)
 - 8 queries from the LUBM Query Set (LQ) are used by removing 2 cyclic queries and 4 queries requiring reasoning support

Effectiveness Evaluation

- A simple but effective metric *Target Query Position (TQP)*: $TQP = 11 P_{target}$
- TQPs of different ranking schemes on TAP

TQPs on LUBM benchmark queries

TQP	9	10	9	10	8	8	9	10
Query	LQ1	LQ3	LQ4	LQ6	LQ7	LQ8	LQ10	LQ14

Efficiency Evaluation

- Search time under different ranking schemes
- Search time under different top-k
- Performance of penalty parameters
- Index size and search time on different datasets
- RACK graph vs. clustered RACK graph

	R-Edge		A-Edge		C-Node		K-Node	
TAP	41914	158	87796	666	167656	314	87796	666
LUBM(1,0)	41763	43	30230	39	16221	13	30230	39
LUBM(20,0)	1127823	43	815511	39	411815	13	815511	39
LUBM(50,0)	2788382	43	2015672	39	1018501	13	2015672	39
DBLP	5619110	19	12129200	23	1366535	5	12129200	23

Demo

- Q2Semantic
 - <u>http://q2semantic.apexlab.org</u>

Conclusions and Future Work

- For the efficiency purpose, we propose a new clustered graph index structure as a summary of the original RDF data and support top-k formal query construction on it.
- For the effectiveness purpose, we design wellperformed ranking schemes. Additionally, we leverage knowledge from Wikipedia to enrich and disambiguates the keyword queries.
- Future Work
 - Query Capability Extension
 - Clustering Method

APEX 数据和知识管理实验室 APEX Data & Knowledge Management Lab

Comfused with complex query schema when using semantic search engine?

Advantage: * Adapt Wiki-thesaurus to enrich terms and distinguish relevant resources. * Clustered resource graph is used to speed up the query construction. * Well-defined ranking scheme is involved in the top-k search process APEX 数据和知识管理实验室 APEX 数据和知识管理实验室 APEX Data & Knowledge Management Lab

Questions?

Thank you for your attending!

