Semantic Reasoning: A Path to New Possibilities of Personalization

Yolanda Blanco Fernández

<u>yolanda@det.uvigo.es</u> University of Vigo (Spain)

5th European Semantic Web Conference Tenerife, June 2008

Motivation

- Overload of information \rightarrow Digital Revolution
- Recommender systems
 - Database
 - Users' profiles \rightarrow preferences or needs
 - Recommendation strategies
 - Content-based filtering
 - Collaborative filtering

Recommendation Strategies

- Content-based filtering:
 - To suggest items similar to those defined in the user's profile → content-descriptions (attributes)
 - Syntactic matching techniques
 - Overspecialized recommendations
- Collaborative filtering:
 - To suggest items interesting for other users with similar preferences
 - Diverse recommendations, but other limitations:
 - Sparsity problem, privacy concerns...

Our Content-based Strategy

- To harness advantages and mitigate weaknesses of traditional content-based filtering:
 - Other users' preferences not necessary \rightarrow privacy
 - Reasoning techniques \rightarrow diversify recommendations
 - Semantic Associations
 - Spreading Activation techniques (SA techniques)
- Adapt reasoning techniques to meet personalization requirements of recommender systems.
- Reasoning framework must include: domain **ontology** and **user modeling technique**.

An Example of TV Ontology

User Modeling Technique

Our Reasoning-based Strategy

- Content-based filtering → To suggest items semantically related to the user's positive preferences.
- Two-phase strategy:
 - Filtering phase: Selects excerpts from ontology containing instances relevant for user, and infers semantic associations between specific items and user's preferences.
 - Recommendation phase: Processes inferred knowledge by SA techniques → detect concepts strongly related to user's preferences → enhanced content-based recommendations.

Filtering Phase: How do we find instances relevant for the user?

- First, the items defined in the user's profile are located in the ontology.
- Properties from these items are successively traversed, reaching new nodes:
 - If node is relevant \rightarrow continue traversing its properties.
 - Otherwise → disregard the properties linking the reached node to others in the ontology.
- Only instances of interest for the user are explored!

Filtering Phase: How do we compute the relevance of a node?

- The stronger the relationship between a node **N** and the user's preferences, the higher the relevance of **N**.
- Relevance value is measured by ontology-dependent filtering criteria:
 - 1. Length of chain of properties established between **N** and class instances in the user's profile:
 - The lower number of intermediate items, the more relevant N
 - 2. Hierarchical relationships between N and user's preferences.
 - 3. Implicit relationships detected by graph theory concepts:
 - High *betweenness* among N and class instances defined in the user's profile → N is strongly related to his preferences.

Filtering Phase: How do we infer Semantic Associations between items?

• Research project SemDis (Anyanwu and Sheth)

Recommendation Phase

- Knowledge available after filtering phase:
 - Class and properties instances.
 - Semantic Associations between specific items.
- This network is processed by SA techniques → SA network:
 - Explore efficiently relationships among nodes interconnected in SA network.
 - Detect items strongly related to user's positive preferences → content-based recommendations

How do traditional SA techniques work?

- Exploration of huge knowledge networks:
 - Nodes \rightarrow activation level (relevance of the node in the network)
 - \circ Links \rightarrow static weights (strength of relationships between linked nodes)

Recommendation Phase: How do we create the user's SA network?

- Nodes \rightarrow Class instances selected by filtering phase.
- Links \rightarrow Property instances and semantic associations.
- How do we weight the links of the user's SA network?:
 - Traditional static weights are not valid for recommender systems due to personalization requirements.
 - The links are weighted according to the user's preferences:
 - □ The stronger the relationship between the two linked nodes and the user's preferences, the higher the weight of the link.
 - Weights of links are updated as the user's preferences change over time.

How do we select our contentbased recommendations?

- Nodes initially activated \rightarrow items in the user's profile.
- Initial activation levels → ratings
- After spreading process...
 - Items with highest activation levels are suggested to the user.
 - Strongly related to his preferences → High quality content-based recommendations.
 - Items are ranked acccording to their activation levels.

A Sample Scenario

- Digital TV domain → overload of audiovisual contents and interactive applications.
- Select content-based recommendations for Mary → TV ontology

Mary's positive preferences	Mary's negative preferences
 Wellcome to Tokyo Learn about World War I Vanilla Sky Jerry Maguire 	 Million Dollar Baby (Morgan Freeman) Game of death (martial arts)

Filtering Phase: Selecting instances relevant for Mary

- Born on 4th July Jerry
 Maguire: Drama movies
- The Last Samurai Vanilla
 Sky: Action movies
- Vietnam War World War I: War topic
- Tokyo Kyoto: Japanese cities
- Danny the Dog Million dollar baby: Morgan Freeman
- Danny the Dog Game of death: Martial arts

Filtering Phase: Inferring Semantic Associations between TV programs

Why are they inferred?
Tom Cruise
Japanese cities
War topic
Action contents
Martial arts
Morgan Freeman

Recommendations Phase: Suggesting TV programs to Mary

- Our strategy suggests...
 - □ Paths of glory
 - □ Born on the 4th of July
 - □ The last samurai

Our strategy does not suggest...
 Danny the Dog

Experimental Evaluation: Setting

- 400 undergraduate students from University of Vigo
- TV ontology with programs extracted from BBC web site and Internet Movie DataBase
- Users rated 400 programs in the range [-1,1]
- We evaluated our reasoning-based strategy against:
 □ O'Sullivan *et al.* → content-based filtering and association rules to measure similarity between programs.

□ Mobasher *et al.* \rightarrow semantics-enhanced collaborative filtering

Experimental Evaluation: Setting

- Training profiles (160 users) → compute values needed in the strategies devoid of our reasoning capabilities.
- **Test profiles** (240 users) \rightarrow execute 3 evaluated strategies:
 - 20 programs to initialize the test users' profiles \rightarrow great sparsity level
 - 380 programs and ratings to measure recommendation accuracy → evaluation data
- **Recall**: percentage of interesting programs that were suggested.
- Precision: percentage of programs suggested that are appealing to the user.
- Average and variance of recall and precision over 240 tests users.

Experimental Evaluation: Results

- Semantic reasoning leads to highest recall and precision values.
- Low overlap between programs defined in test users:
 - □ O'Sullivan *et al.*→ difficult to detect association rules between programs, and measure similarity between programs.
 - □ Mobasher *et al.* → difficult to detect neighbors and offer collaborative recommendations.

Conclusions

- Content-based strategy enhanced by reasoning:
 Semantic associations
 SA techniques
- Diverse recommendations → items semantically related to the user's preferences → beyond syntactic matching
- Positive and negative preferences are considered.
- Recommendations adapted as user's preferences evolve.
- Flexible enough to be used in multiple domains.
- Significant increases in recall and precision w.r.t. reasoning-devoid strategies.

Further Work

- Automatic adjustment of thresholds:
 - Filtering phase
 - Recommendation phase
 - Dependent on domain ontology and user feedback.
- New experiments with subscribers of the cable network of Spanish operator R (*http://www.mundo-r.com*).

Thank you for your attention!