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 It  is  useful to calculate distance for time series

 Retrieval, visualization, classification etc

but often difficult

 We often have only discrete observations made at irregular time intervals, or have 
different number of observations for each time series

 We need to consider the temporal structure . Therefore even when the time series are 
synchronized, the point-wise distance is not desired.

 Our approach: one way to circumvent the two difficulties



Our approach synthesizes ideas from  functional data  analysis,  Gaussian process,  
Bregman divergence,  and non-parametric mixed-effect model 
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 Functional data analysis uses functions (curves) to represent discrete observations.

yi = [yi1,yi2,…,yiNi]
T fi(t)

 Gaussian Processes (GPs) provide a principled way for functional data analysis. Its 
probabilistic framework will later be exploited in deriving a distance  measure and 
learning the regularizer (or equivalently, the kernel).   

 Generative Model:

 Prior for  functions:

 Observation model:

 Regression: (mapping from observations to smooth curves)

(with kernel K)



Functional data analysis  uses functions (curves) to represent discrete observations.

But  two questions remains:

QI : How do we calculate the distances between curves?  

A: We use a distance derived from functional Bregman divergence and Gaussian 
processes

QII: How do we specify the Gaussian process?

A: We learn to specify the Gaussian process through non-parametric mixed-effect 
model, assuming there are many similar time series available



To answer QI:  How do we calculate the distance between curves

We are going to derive a divergence measure for smooth curves based on Bregman 
divergence and exponential family

 Bregman  divergence  is  a divergence measure based on a convex function ϕ(x) 

 The Bregman divergence can be related to exponential family distributions.  More 
specially, any e-family distribution  p(x; θ)

can equivalently formulated as 

where μ(θ) is the expectation parameters corresponding to θ, and ϕ(x) is the conjugate 
function of Φ

 We argue that the Bregman divergence  dϕ(x1||x2) pro vides a reasonable model-
weighted divergence between x1 and  x2 associated with distribution p(x; θ).

 The  Bregman divergence can be extended to space of functions.



To answer QI:  How do we calculate the distance between curves ? 

 Viewing Gaussian process

as exponential family distribution for functions, we can calculate the corresponding 
(functional) Bregman divergence as

where g[f] is the corresponding seed functional and Dg[ ] is the Fr échet derivative. 

 For Gaussian process, we simply have 

which will be used as the squared distance for curves f1 and f2.

 We can write the distance between two time series as the distance of two corresponding 
representing curves  

where  



To answer Q II:  How do we specify the Gaussian process.

 We use a non-parametric mixed-effect model to learn the Gaussian  process. Mixed-
effect model describes a population of regression models by assuming every individual 
model consists of two pieces:

 We get non-parametric mixed-effect models by using Gaussian process  to model both 
fixed-effect and random effect 
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•The central piece is called 
fixed-effect  

•The individual deviation 
is called random effect



 Generative Model                                                                                                             
We assume the observations are generated by k smooth curves  {f1 f2 …  fk}  fluctuating 
around a mean function  f0 (fixed-effect).  We use 

to denote the deviation (random effect) of  fi from f0,  both effects are assumed zero-
mean Gaussian processes:

 Fixed effect:

The RKHS H0 (or equivalently the kernel K0) is predetermined, but  f0 is unknown

 Random effect

Both f and H are unknown.  Generally  H is different from H0 

 Observation Model 
The discrete observations yi are sampled from fi with noise of unknown variance σ2.

 Parameter s   The unknown model parameters consist of  



 Our learning task is find M that maximizes the following probability 

which (thanks to the Gaussian property) can be simplified to

 Non-parametric mixed-effect model can be fit using the EM-algorithm with {f1,f2,…,fk} 
as the latent variables

We have two different modeling choices for K

 Parametric  

e.g. RBF kernel  or convex combination of  known kernels

Appropriate for sparse observations or unsynchronized time series

 Non-parametric  

covariance matrix  evaluated on common observation times t

Good  at fully exploiting the data, but works only on synchronized time series

(functional integral)

(standard  integral )



 In each E-step we have

 In each M-step, we find a new K

where 

and    

 when we adopt a non-parametric K, we have closed form solution for K

 when we adopt a parametric K(t,t’; θ), we  optimize over the parameter θ

about f0 and σ about K



 We try to predict whether an aged person will decline into cognitive impairment based 
his/her longitudinal clinical records on motor ability.   

 We considered four different motor tests:

.

•For each subject, the motor ability are measured  
with irregular intervals (usually 0.5~1 year)

•Different subjects have their clinical visits on 
different schedules, with even different number of 
available tests.

•For people from impaired group,  we use only the 
readings before a clinical diagnosis of dementia is 
reached.



 We try to predict whether an aged person will decline into cognitive impairment based 
his/her longitudinal clinical records on motor ability.   

 We considered four different motor tests:

.

•Both K0 (the kernel for fixed effect f0) and K (the 
kernel for the random effect) are parameterized

• Parameters to fit { f0, a, s, σ }

• The fit  fixed-effect (red curve)  shows the general 
trend of deterioration of motor ability with age



 We use SVM with the RBF kernel based on the proposed distance measure  

b

•We compared it with the SVM with the 
LSQ fit coefficients  (polynomial) of 
individual time series as the feature 
vector

•We compare the ROC curve generated 
from the  different classifiers.

•The ROC associated with the proposed 
distance measure  (red)  is obviously 
better than the one with LSQ feature 
(blue)



 We examined the human expert’s EEG signal to tell whether he has seen a target  (e.g. 
golf course) in satellite images.  

•After proper alignment and sampling, we get time 
series with 4128 synchronized observations. 

•Previous research typically treat each time series as a 
vector and calculate the point-wise (Euclidean) 
distances.

• We directly fit K  (NxN matrix) and f  (N-dim vector) 

only evaluated on the observation times

•Experiments shows the proposed distance measure 
outperforms point-wise distance in the SVM classifier 
as well as linear classifier.



 Use smooth curve to represent time series (based on Gaussian process)

 Use the distance (derived from GP and Bregman divergence) between representing 
curves as the distance for corresponding time series

 Learn the Gaussian process

 Works well on classification of real world problems



Thank  You


