
Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

MLG 2008

Improved Software Fault Detection
with Graph Mining

Frank Eichinger Klemens Böhm Matthias Huber

Institute for Program Structures and Data Organisation (IPD)
Universität Karlsruhe (TH), Germany

5th July 2008

Frank Eichinger Improved Software Fault Detection MLG 2008 1 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Locating Bugs in Software

Software is almost never shipped bug-free,
even if tested extensively.
Particularly challenging are:

Noncrashing bugs – no stack trace available
Occasional bugs – occur just with some input data

Some resources are available, but software projects are
way too large for a complete review.

Idea:
Locate noncrashing occasional bugs
with data mining techniques.
Using a weighted graph mining approach

Frank Eichinger Improved Software Fault Detection MLG 2008 2 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Locating Bugs in Software

Software is almost never shipped bug-free,
even if tested extensively.
Particularly challenging are:

Noncrashing bugs – no stack trace available
Occasional bugs – occur just with some input data

Some resources are available, but software projects are
way too large for a complete review.

Idea:
Locate noncrashing occasional bugs
with data mining techniques.

Using a weighted graph mining approach

Frank Eichinger Improved Software Fault Detection MLG 2008 2 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Locating Bugs in Software

Software is almost never shipped bug-free,
even if tested extensively.
Particularly challenging are:

Noncrashing bugs – no stack trace available
Occasional bugs – occur just with some input data

Some resources are available, but software projects are
way too large for a complete review.

Idea:
Locate noncrashing occasional bugs
with data mining techniques.
Using a weighted graph mining approach

Frank Eichinger Improved Software Fault Detection MLG 2008 2 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Outline

1 Motivation

2 Data Mining in Software Engineering
Traditional Techniques
Graph-Based Approach

3 Weighted Call Graph Mining

4 Results

5 Conclusion

Frank Eichinger Improved Software Fault Detection MLG 2008 3 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Data Mining in Software Engineering

Traditional data mining techniques process
feature vectors of numerical and categorical data.
In software engineering, this can be

different code metrics (static analysis)
data gained from instrumentation (dynamic analysis)

METRIC 1 METRIC 2 METRIC 3 ...

Software artefact 1 123 5 12 ...

Software artefact 2 222 8 12 ...

... ... ... ... ...

Searched are patterns or properties
which are more likely in buggy software.

Frank Eichinger Improved Software Fault Detection MLG 2008 4 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Challenges with Software Metrics

Shortcomings of relational metric collections:
Static analysis

Even hundreds of metrics
describe a program insufficiently.
Static code metrics help little for locating bugs.

Dynamic analysis (instrumentation)
Tradeoff: runtime vs. amount of relevant data

Idea:
Look at program executions represented as
call graph and analyse its structure.
Identify substructures typical for failing executions.

Requires a test oracle, which is typically available.

Analyse the call frequencies (edge weights) as well!

Frank Eichinger Improved Software Fault Detection MLG 2008 5 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Challenges with Software Metrics

Shortcomings of relational metric collections:
Static analysis

Even hundreds of metrics
describe a program insufficiently.
Static code metrics help little for locating bugs.

Dynamic analysis (instrumentation)
Tradeoff: runtime vs. amount of relevant data

Idea:
Look at program executions represented as
call graph and analyse its structure.
Identify substructures typical for failing executions.

Requires a test oracle, which is typically available.

Analyse the call frequencies (edge weights) as well!

Frank Eichinger Improved Software Fault Detection MLG 2008 5 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Call Graphs

Call graphs are rooted
ordered trees.
Program executions as
call graphs:

Methods → nodes
Method calls → edges

Bugs in the call tree:

Structure affecting
E.g., a bug in an
if-condition in a

Call frequency
affecting

E.g., a bug in a
loop-condition in c

a

b c

b b b

Frank Eichinger Improved Software Fault Detection MLG 2008 6 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Call Graphs

Call graphs are rooted
ordered trees.
Program executions as
call graphs:

Methods → nodes
Method calls → edges

Bugs in the call tree:
Structure affecting

E.g., a bug in an
if-condition in a

Call frequency
affecting

E.g., a bug in a
loop-condition in c

a

b c

b b b

Frank Eichinger Improved Software Fault Detection MLG 2008 6 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Call Graphs

Call graphs are rooted
ordered trees.
Program executions as
call graphs:

Methods → nodes
Method calls → edges

Bugs in the call tree:
Structure affecting

E.g., a bug in an
if-condition in a

Call frequency
affecting

E.g., a bug in a
loop-condition in c

a

b c

b b b

Frank Eichinger Improved Software Fault Detection MLG 2008 6 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Reduction of Call Graphs

Millions of method calls are very common!

Several reduction techniques exist, e.g.:

a

b c

b b b

a

b

c

a

b

1

c

1

b

3

Frank Eichinger Improved Software Fault Detection MLG 2008 7 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Reduction of Call Graphs

Millions of method calls are very common!

Several reduction techniques exist, e.g.:

a

b c

b b b

a

b

c

a

b

1

c

1

b

3

Frank Eichinger Improved Software Fault Detection MLG 2008 7 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Conventional Approach (di Fatta et al., 2006)

1 Input data:
Collection of call graphs classified as correct or failing.

2 Search for frequent subgraphs
with an arbitrary algorithm.

3 Identify discriminative subgraphs: frequent within the
faulty but not within the correct executions.

The methods within these subgraphs display an
increased likelihood of containing a bug.

→ Here, only structural differences are considered –
no call frequencies of graphs occurring in both sets.

Frank Eichinger Improved Software Fault Detection MLG 2008 8 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Framework for Locating Bugs

reduced call graphs

frequent subgraph mining

conventional-scoring

frequent in failing
but not in correct

weight-based-scoring

occurring in
failing and correct

conventional
ranking

combination
intermediate

ranking

combined ranking

Both types of
bugs are
considered:
structure and
call frequency
affecting ones

Integration of
the traditional
approach

Frank Eichinger Improved Software Fault Detection MLG 2008 9 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Framework for Locating Bugs

reduced call graphs

frequent subgraph mining

conventional-scoring

frequent in failing
but not in correct

weight-based-scoring

occurring in
failing and correct

conventional
ranking

combination
intermediate

ranking

combined ranking

Both types of
bugs are
considered:
structure and
call frequency
affecting ones

Integration of
the traditional
approach

Frank Eichinger Improved Software Fault Detection MLG 2008 9 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Framework for Locating Bugs

reduced call graphs

frequent subgraph mining

conventional-scoring

frequent in failing
but not in correct

weight-based-scoring

occurring in
failing and correct

conventional
ranking

combination
intermediate

ranking

combined ranking

Both types of
bugs are
considered:
structure and
call frequency
affecting ones

Integration of
the traditional
approach

Frank Eichinger Improved Software Fault Detection MLG 2008 9 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Entropy-based Ranking of Edge Weights

Identification of edge weights which most differentiate
between the two classes
Every edge in every frequent subgraph is considered:

Improved Software Fault Detection with Graph Mining

techniques is that such algorithms do not scale for large
graphs. Call graphs become relatively huge, as sub-
structures typically are repeated many times. There-
fore, reduction techniques need to be applied first. In
the mentioned literature, this leads to a loss of infor-
mation. Namely, call frequencies are lost, which are
important for detecting certain groups of bugs.

3. Call Graph Reduction

The last section has mentioned two approaches of re-
ducing software call graphs. The first one from Liu
et al. (2005) does total reduction – every method oc-
curs just once within the graph. See Figure 1(c) for
a totally reduced version of Figure 1(a). This leads
to small graphs, which allows for graph-mining-based
bug localisation even with larger software projects. On
the other side, much information about the program
execution is lost, e.g., frequencies of the execution of
methods and information on different structural pat-
terns within the graphs. The approach from di Fatta
et al. (2006) omits substructures which are called more
than twice in a row (see Figure 1(d)). Thus, it keeps
more information than the other one, with the risk of
generating very large graphs. In consequence, graph
mining algorithms might not work on these graphs.

In our approach, we try to overcome the shortcomings
of both approaches and keep most of the information
available. We reduce substructures executed several
times in a row by deleting all but the first one and
inserting the call frequencies as edge weights (see Fig-
ure 1(b)). This allows for a detailed analysis of the call
frequencies. If, for example, a bug is hidden in a loop
condition, this might lead to hundreds of iterations of
the loop, compared to just a few in correct program ex-
ecutions. Note that, with both previous graph reduc-
tion techniques, the graph of the correct and failing ex-
ecution is reduced to exactly the same structure in this
case. In our approach, the edge weights would be sig-
nificantly different. This raises the need for weighted
graph mining algorithms. In the following section, we
present a technique for analysing differences in edge
weights subsequent to traditional graph mining.

4. The Mining Framework

We will now describe our framework to derive a rank-
ing of potentially buggy methods from call graphs.
This ranking can be given to a software developer who
can do a code review of the suspected methods. At
first, frequent subgraph mining is applied to the re-
duced call graphs. The resulting frequent subgraphs
are then processed with two different approaches: the

conventional scoring approach and our entropy based
approach. As some bugs result in different call fre-
quencies while others result in different substructures,
we combine both scores, which leads to a final rank-
ing. Figure 2 is an overview of this framework – the
following paragraphs describe the individual steps.

conventional approach entropy based approach

reduced call graphs

frequent subgraph mining

conventional-scoring
(based on support measures)

frequent in failing
but not in correct

entropy-scoring
(based on edge weights)

occurring in
failing and correct

conventional method-ranking
combination of

the scores
intermediate

method-ranking

combined method-ranking

Figure 2. The ranking framework.

After having reduced the call graphs gained from cor-
rect and failing program executions, we do frequent
subgraph mining with the CloseGraph algorithm (Yan
& Han, 2003), ignoring the edge weights for now.

In the conventional approach (di Fatta et al., 2006),
we just consider the discovered subgraphs which are
frequent within the set of failing executions, but not
frequent in the set of correct ones. In order to gain a
scoring of the methods, we calculate for every method
the probability Pc for containing a bug. Please see the
literature for further details.

In our entropy based approach, we focus on fre-
quent subgraphs occurring in both classes of program
executions, the class of correct and the class of failing
ones. Our goal is to find out which edge weights are
most significant to discriminate the two classes of exe-
cutions. To this end, we first assemble a feature table.
This table contains all edge weights in all subgraphs
discovered by CloseGraph in the columns1 and all pro-
gram executions (represented by the call graphs) in the
rows. The following table serves as an example:

SG1 SG1 SG2

a→b a→c a→b · · · Class
Graph1 2 1 6 · · · failing
Graph2 0 0 4 · · · correct
· · · · · · · · · · · · · · · · · ·

1More precisely, we also differentiate between edges oc-
curring at different positions within one subgraph.Application of an entropy-based feature selection

algorithm to the table.
Result: Ranking of the columns (edges)

Frank Eichinger Improved Software Fault Detection MLG 2008 10 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Results

Example output:

METHOD SCORE

1 inputscan() 0.9833
2 showinsert() 0.9204
3 showdelete() 0.4876
4 oldconsume() 0.4876
5 addSymbol() 0.2428

The bug was instrumented in showinsert().
A software developer has to check two methods only.
Low line numbers are better!

Frank Eichinger Improved Software Fault Detection MLG 2008 11 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Results

Example output:

METHOD SCORE

1 inputscan() 0.9833
2 showinsert() 0.9204
3 showdelete() 0.4876
4 oldconsume() 0.4876
5 addSymbol() 0.2428

The bug was instrumented in showinsert().
A software developer has to check two methods only.
Low line numbers are better!

Frank Eichinger Improved Software Fault Detection MLG 2008 11 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Experiments

Setting:
Open source Java tool, 25 methods
9 artificial but realistic bugs
100 program executions each

Experimental results:
Displayed is the number of methods to be reviewed.

Exp. \ Bug No. 1 2 3 4 5 6 7 8 9
Conventional 3 – 1 4 6 4 3 3 1
Intermediate 3 3 1 1 1 3 3 1 –
Combined 1 3 1 2 2 1 2 1 3

Localisation precision increased by 2.4.

Frank Eichinger Improved Software Fault Detection MLG 2008 12 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Conclusion

Summary of contributions
New call graph reduction variant
Mining of weighted graphs in a classification scenario

Combining structural and numerical techniques
Applicable in other domains

Considering weights of non-discriminative patterns
Results in software engineering

Ability to detect a new important class of bugs
Doubled precision of bug localisations

Current and future work
Weight based constraints
Mining of large graphs/large software projects
Other fields of application

Frank Eichinger Improved Software Fault Detection MLG 2008 13 / 14



Motivation

Software
Engineering
Traditional
Techniques

Graph-Based
Approach

Weighted Call
Graph Mining

Results

Conclusion

Questions?

Thank you for your attention!

Frank Eichinger Improved Software Fault Detection MLG 2008 14 / 14


	Motivation
	Data Mining in Software Engineering
	Traditional Techniques
	Graph-Based Approach

	Weighted Call Graph Mining
	Results
	Conclusion

