The Graphtron

An Online Algorithm for Learning a Labeling of a Graph

Kristiaan Pelckmans and Johan Suykens

ESAT - SCD/sista - KULeuven, Leuven, Belgium CSML - UCL - London, UK

4 July 2008

The Graphtron

2 Some Examples

Some Analysis

I. - The Graphtron

The Graphtron: Motivation

The Graphtron: Motivation

The Graphtron: Motivation

cut(Africa) = 1

The Graphtron: Formal Setting

- Given Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with n > 0 nodes;
- ② Given weights a_{ij} on edges e_{ij} , with $a_{ij} = a_{ji} \ge 0$ and $a_{ii} = 0$;
- Given Laplacian

$$\boldsymbol{L} = \boldsymbol{A} - \boldsymbol{D}$$

and $\mathbf{D} = \operatorname{diag}(\mathbf{A}1_n)$ (degree matrix);

1 To each node v_i , a fixed but unknown label $y_i \in \{-1, 1\}$ is associated;

The Graphtron: Formal Setting

We adopt the assumption that the labeling to be learned is in some sense simple, quantified through the notion of GRAPHCUT induced by a labeling $y \in \{-1, 1\}^n$, or

$$\operatorname{cut}(y) = \sum_{y_{ij} \neq y_i} a_{ij} = \frac{1}{4} \sum_{i,j=1}^{n} a_{ij} (y_i - y_j)^2 = \frac{1}{4} y^T \mathbf{L} y. \tag{1}$$

8/25

K. Pelckmans (SCD & UCL)

The Graphtron

MLG 2008

The Graphtron: Formal Setting

The learning setting is as follows

- **1** An adversary (possibly non-random) asks for the label of a new node v_t ;
- Our algorithm makes a prediction

$$f_M(v_t) \in \{-1, 1\}$$

with M representing all needed information available prior to t.

3 The true label y_t becomes available, and we incur a loss ℓ

$$\ell(f_M(v_t), y_t)$$

• After T > 0 iterations, we count the number of mistakes until t, or

$$m_T = \sum_{t=1}^T \ell(f_M(v_t), y_t)$$

The Graphtron: Algorithm

"Online learning over graphs, Mark Herbster, Massimiliano Pontil, Lisa Wainer; ICML 2005, Pages: 305 - 312, 2005

→ based on relation **L** and Kernels, margin vs. graphcut + perceptron,

But $O(n^3)$ and \mathcal{G} fully given!

"On a theory of learning with similarity functions", N. balcan, A. Blum, ICML 2006, p 73-80, 2006

The Graphtron: Algorithm

Definition (The Graphtron)

```
Input: initialize M_0 = \{\}, m = 0 repeat
```

- 1. An adversarial asks the label of node i.
- 2. We predict

$$f_M(v_i) = \operatorname{sign}\left(\sum_{j \in M_m} a_{ij} y_j^*\right)$$

3. Nature provides the true label y_i^*

if
$$f_M(v_i) \neq y_i$$
 then

$$M_{m+1} = M_m \cup \{i\} \text{ and } m = m+1$$

end if

until one is satisfied (computationally, accuracy)

III. - Some Examples

K. Pelckmans (SCD & UCL) The Graphtron MLG 2008

Examples

Sequence of 3 mistakes, degree of mistake graph 2.

Examples (ct'd)

M: 1,2, 5, 7, 40, 73, 150, 262 n:

2000

surpr: 1.3888

m: 8

Examples (ct'd)

M: 1,2,3,4, 13, ...,402, 543,810,1202

n: 2000

surpr: 11.2876

m: 28

Examples (ct'd)

M: 1,2,3,4,5, ...

n: 5000

surpr: 200,9572

m: 202

prediction error 12.87%

modify adjacency matrix A' = A * A + A

m = 398

Prediction error 7.21%

The Graphtron

- Simple
- (Sub)linear in Time and Space Complexity
- 3 No need to know G in advance;
- **3** Stochastic Graphs $a_{ij} = s(X_i, X_j)$ with $X \sim P$;

III. - Some Analysis

Analysis

Definition (Mistake Subgraph)

Let $M=M_M$ contain the indices of nodes where the algorithm incurs a mistake. Then the mistake subgraph \mathcal{G}_M is the subgraph of \mathcal{G} which only contains the nodes in M, and the present edges between them. Furthermore, let d_M be the degrees of the subgraph spanned by the nodes in M, or $d_{M,i}=\sum_{i\in M}a_{ii}$.

Analysis

Lemma (Mistake Bound)

Let y^* be the true labeling. The above algorithm will incur at most |M| mistakes where

$$\sum_{i\in M} d_{M,i} \leq 4\operatorname{cut}(y^*),$$

where $\sum_{i \in M} d_{M,i}$ equals twice the weight of all edges in the mistake graph \mathcal{G}_M .

Analysis: Proof

- Re-index such that all mistakes first;
- $y^T L y \geq y_M^T L_M y_M$

- If t > m (no mistake), then $y_t(A_L y_M) > 0$
- Thus

$$4 \operatorname{cut}(y) \geq y_M^T \mathbf{L}_M y_M \geq 2 \operatorname{degree}(\mathcal{G}_M)$$

Graph Structure

"But what is the relation between 'degree(\mathcal{G}_M)' and the number of mistakes m?"

• If cut(y) = 0, tight upperbound

$$m \le \alpha(\mathcal{G}) \le \theta(\mathcal{G}) \le \vartheta(\mathcal{G})$$

- ② If nothing known on \mathcal{G} apriori, implicit bound!
- If the graph structure is known one can make the bound explicit

K. Pelckmans (SCD & UCL)

Conclusions

- ! The Graphtron as a paradigm for online learning without explicit representation;
- ! (sub) Linear Complexity
- ! Stochastic Graphs
- | Multiclass Case
- ? Relation Mistake Subgraphs and graph Topology
- ? towards Optimal Teacher
 - = "Informed adversary making algorithm learn the labeling as fast as possible".