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Two Aspects in This Research

New Optimization Approach that can handle very large data sets

• Reparametrization

• Restricted simplicial decomposition

• Proximal point algorithm

Formulation of Discriminative Training of Generative Models

• Max margin

• Control of model deviation

• Similar formulations exist in the literature
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Overview

We consider
• Discriminative training (DT) for structured predictions

• formulation motivated by SVM
(e.g., Collins ’02, Altun et al. ’03, Taskar et al. ’04)

• enforce “margin constraints”
• result in large scale optimization problems

We present a new dual optimization algorithm:

• Reparametrization for dimensionality reduction

• Applicable to extended DT formulations
with additional parameter constraints and non-quadratic objectives

We focus on a particular type of problem:

• Discriminative training for generative models
• discrete space DAG, log-linear models
• supervised learning setting
• an example of the extended DT formulation
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Setting for Supervised Learning

Consider directed graphical models with discrete spaces

• Examples: Bayesian networks (BN), hidden Markov models (HMM)
• Parameters of the model: a set of log of conditional probabilities

θ = {θi , i ∈ I}, θi : ln p(X = · | paX ), for some variable X

• Parameter constraints: 1′eθi = 1, i ∈ I

For training:

• Fully observed examples, indexed by K
• ∀k ∈ K, specify prediction variables (considered as hidden) and

observation variables (non-hidden)

• Prediction variables may be naturally determined by tasks,
or, chosen just for the purpose of training
e.g., choose different subsets of nodes for different exs. to cover the graph

• Optimize θ using the SVM-like DT criteria
enforce margin constraints

Use of such training: e.g., when prediction accuracy is important,
when examples are likely to be dependent
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Formulation of Discriminative Training Problem

Notation: for each example k ∈ K,

• Sk : the space of all possible prediction outcomes

• (s∗, o): values of hidden and non-hidden variables, resp.

Introduce margin constraints: ∀k ∈ K, ∀s ∈ Sk ,

ln p(s, o ; θ)− ln p(s∗, o ; θ) + lk (s, s∗) ≤ εk ,

εk : positive slack variables for the usual non-ideal case; lk : loss function

• Meaning: ideally, after training, p(s | o) is peaked at s∗

• Write the linear margin constraints equivalently asX
i∈I

ai,k (s)′θi + bk (s) ≤ εk , ∀s ∈ Sk , k ∈ K
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Primal Problem

Formulate training as solving the convex program:

(P) min
θ,ε

−
X
i∈I

c′i θi + η
X
k∈K

εk

subj.
X
i∈I

ai,k (s)′θi + bk (s) ≤ εk , ∀s ∈ Sk , k ∈ K (marg.)

1′eθi ≤ 1, ∀i ∈ I
θi ≤ 0, ∀i ∈ I, εk ≥ 0, ∀k ∈ K

Objective function:

• First term : control degree of deviation from certain given parameters

−c′i θi comes from KL-divergence D(p‖q) = −
P

j pj ln qj − H(p)

∀i, ln q : θi , ci ∝ p = some fixed distribution

p can be e.g., ML estimate, uniform distribution

• Second term: penalty for margin violation

1′eθi = 1 relax to−→
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Reparametrization – Dimensionality Reduction

Margin constraints in (P):X
i∈I

ai,k (s)′θi + bk (s) ≤ εk , ∀s ∈ Sk , k ∈ K (marg.)

Corresponding term in the Lagrangian function L:

with multipliers β = {βk (s), k ∈ K, s ∈ Sk},X
k∈K,s∈Sk

βk (s)
“ X

i∈I
ai,k (s)′θi + bk (s)− εk

”
=

X
i∈I

“ X
k∈K,s∈Sk

βk (s) ai,k (s)′
”
θi +

“ X
k∈K,s∈Sk

βk (s) bk (s)
”
−

X
k∈K,s∈Sk

βk (s) εk

def
= µi

def
= ω

• Data-dependent linear transformation of β

• dim(µi) = dim(θi), dim(ω) = 1



Overview and Problem Formulation Algorithm Preliminary Experiments Summary

Reparametrization – Dimensionality Reduction

Margin constraints in (P):X
i∈I

ai,k (s)′θi + bk (s) ≤ εk , ∀s ∈ Sk , k ∈ K (marg.)

Corresponding term in the Lagrangian function L:

with multipliers β = {βk (s), k ∈ K, s ∈ Sk},X
k∈K,s∈Sk

βk (s)
“ X

i∈I
ai,k (s)′θi + bk (s)− εk

”
=

X
i∈I

“ X
k∈K,s∈Sk

βk (s) ai,k (s)′
”
θi +

“ X
k∈K,s∈Sk

βk (s) bk (s)
”
−

X
k∈K,s∈Sk

βk (s) εk

def
= µi

def
= ω

• Data-dependent linear transformation of β

• dim(µi) = dim(θi), dim(ω) = 1



Overview and Problem Formulation Algorithm Preliminary Experiments Summary

Reparametrization – Dimensionality Reduction

Margin constraints in (P):X
i∈I

ai,k (s)′θi + bk (s) ≤ εk , ∀s ∈ Sk , k ∈ K (marg.)

Corresponding term in the Lagrangian function L:

with multipliers β = {βk (s), k ∈ K, s ∈ Sk},X
k∈K,s∈Sk

βk (s)
“ X

i∈I
ai,k (s)′θi + bk (s)− εk

”
=

X
i∈I

“ X
k∈K,s∈Sk

βk (s) ai,k (s)′
”
θi +

“ X
k∈K,s∈Sk

βk (s) bk (s)
”
−

X
k∈K,s∈Sk

βk (s) εk

def
= µi

def
= ω

• Data-dependent linear transformation of β

• dim(µi) = dim(θi), dim(ω) = 1



Overview and Problem Formulation Algorithm Preliminary Experiments Summary

Reparametrization – Dimensionality Reduction

Margin constraints in (P):X
i∈I

ai,k (s)′θi + bk (s) ≤ εk , ∀s ∈ Sk , k ∈ K (marg.)

Corresponding term in the Lagrangian function L:

with multipliers β = {βk (s), k ∈ K, s ∈ Sk},X
k∈K,s∈Sk

βk (s)
“ X

i∈I
ai,k (s)′θi + bk (s)− εk

”
=

X
i∈I

“ X
k∈K,s∈Sk

βk (s) ai,k (s)′
”
θi +

“ X
k∈K,s∈Sk

βk (s) bk (s)
”
−

X
k∈K,s∈Sk

βk (s) εk

def
= µi

def
= ω

• Data-dependent linear transformation of β

• dim(µi) = dim(θi), dim(ω) = 1



Overview and Problem Formulation Algorithm Preliminary Experiments Summary

Size-Reduced Dual Problem
With an Implicit Set Constraint

Write the dual problem in terms of (µ, ω) instead of β:

(D) max
µ,ω,λ

ω −
X
i∈I

λi +
X
i∈I

qi(µi , λi)

subj. λ ≥ 0, (µ, ω) ∈ D

• qi terms: from minimizing L w.r.t. primal variables

qi (µi , λi ) = min
θi≤0

h
(µi − ci )

′θi + λi 1
′eθi

i
• D: an implicit set constraint determined by reparametrization

D =
n

(µ, ω)
˛̨̨
µi =

X
k∈K,s∈Sk

βk (s)ai,k (s), ω =
X

k∈K,s∈Sk

βk (s)bk (s),

βk ≥ 0, 1′βk ≤ η, ∀k ∈ K
o

• Dim. of dual function = Dim. of primal variables +|I|+ 1
• Size of (D) “independent” of |Sk | and |K|
• D can be very complicated; apply feasible direction methods (RSD

algorithm)
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Background: Feasible Direction Methods –
Simplicial Decomposition

To deal with an implicit and complicated feasible region:

(1) Make successive inner approximation of the feasible region

– Direction finding subproblems:
for maxz∈Z Q(z), typically solve

max
z∈Z

∇Q(z t )′(z − z t )

In our case: “loss-augmented inference” (exact or approximate)

(2) Optimize the function over inner approximations

– Master problems
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Restricted Simplicial Decomposition (RSD)

RSD (Hearn et al. ’87):

• Set an upper limit to the
dimension of the simplex:
complexity of master problems
independent of the original
problem

• Apply a projected Newton
method (Bertsekas ’82) to solve
master problems: superlinear
convergence, finite
convergence for quadratic
objective

Points at ascent dir.

z

zt

zQ z t+1

*

+

+

+

*

*

Complicated

 feasible region

  found by dir−finding

0
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Algorithm: Reparametrization + RSD + · · ·
Motivation for Applying the Proximal Point Algorithm

Difficulty of applying RSD directly to solve (D):
• The dual function is not everywhere real-valued (unlike the QP case)

µ needs to satisfy: µi ≤ ci , i ∈ I

Finding a point in {(µ, ω) | µi ≤ ci , i ∈ I, ω ∈ <} ∩ D is costly.

Solution:

• Add a quadratic term γ0
2 ‖θ − θ0‖2 to (P)

• Moving the center θ0 in a certain way to approach an optimal solution
of (P) – known as the proximal point algorithm:

Exact form: to solve minx∈X f (x), iterate

xn+1 = arg min
x∈X

h
f (x) + γn

2 ‖x − xn‖2
i
, with γn ≥ 0, supn γn < ∞.
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Dual Proximal Point Algorithm

We solve a sequence of regularized primal problems by dual optimization
with reparametrization and RSD:

(Pn) min
θ,ε

−
X
i∈I

c′i θi + η
X
k∈K

εk + γn
2 ‖θ − θn‖2

subj.
X
i∈I

ai,k (s)′θi + bk (s) ≤ εk , ∀s ∈ Sk , k ∈ K

1′eθi ≤ 1, ∀i ∈ I, εk ≥ 0, ∀k ∈ K

(Dn) max
µ,ω,λ

ω −
X
i∈I

λi +
X
i∈I

qn
i (µi , λi )

subj. λ ≥ 0, (µ, ω) ∈ D

where qn
i (µi , λi ) = min

θi∈<di

h
(µi − ci )

′θi + λi 1
′eθi + γn

2 ‖θi − θn
i ‖

2
i
.

• Can efficiently evaluate qn
i (Newton’s method, global quadratic

convergence) and its 1st and 2nd order derivatives

• D does not depend on θn
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Algorithm Chart from Dual Viewpoint

optimality conditions
solution

inner appr.

of D
Evaluation

Dual Function
center

Determine

Center Update

current dual solution

+ the degree of satisfying 

Master Problem

Direction Finding

form a new
master problem

expand inn.−appr.
loss−augmented inference

apply projected Newton to

appr. solve the dual on 

the inner approximation

RSD Iterations

current dual
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Algorithm Variants with Same Idea

Alternative reparametrization for working sets:

• Partition training data K = K1 ∪ K2 ∪ · · · ∪ Km

• Introduce (µj , ωj), j = 1, . . . , m by grouping respective terms in L:X
i∈I

“ mX
j=1

X
k∈Kj ,s∈Sk

βk (s) ai,k (s)′

| {z }
”
θi +

“ mX
j=1

X
k∈Kj ,s∈Sk

βk (s) bk (s)

| {z }
”

def
= µj def

= ωj

• Dual problem with implicit set constraints (µj , ωj) ∈ Dj , j = 1, . . . , m
relation with the first reparametrization:

µ =
mX

j=1

µj , ω =
mX

j=1

ωj , D = D1 +D2 + · · ·+Dm

• Special case/connection with cutting plane-like methods:
singleton Kj , m = |K|
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Algorithm Variants with Same Idea

Further remarks on reparametrization:

• Arbitrary and varying working sets can also be handled in the first
reparametrization (µ, ω): use the inner approximation view

• For different margin violation penalties: e.g., quadratic or loss-rescaled
slacks (Tsochantaridis et al. ’05); D may be unbounded, but the same
algorithm can be applied.

Note:

• Reparametrization preserves the inference problem structure

• On use of working sets: proper batch size + coordinate ascent trades off
the complexity of direction finding subproblems with that of master
problems, and achieves overall efficiency.
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Algorithm Behavior
and Comparisons
of Working Set Sizes

Synthetic HMM data:
10 states, 7 observations
1000 sequences/length 50
dim(θ) = 180, |I| = 21

Batch size ×m:

B 100× 10

G 500× 2

M 1000× 1
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I: the Synthetic HMM Example
HMM with 10 states and 7 observations:

Dynamics: clockwise,
random jump w/ a small
probability (≈ 0.3)

Observation: uniform
��*

• Training: 1000 seq. of length 50, ci = uniform

• Test: 100 seq. of length 50, average over 10 runs
measure loss on MAP state seq. loss: distance on the ring

Test loss:
DT: 82.2± 13.5 per seq.
ML: 101.6± 14.0 per seq.

Comparison of the dimensionalities of dual variables:
• |I| = 21, dim(θ) = 180,

dim(β) = 1000× 1050
• reparametrization w/ m working sets:

dim = m × 181 + 21

• “edge-wise”/“marginal polytope”
parametrization:
dim = 1000× 50× (10× 10) + 21
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II: Yeast Dataset – a Case Study on Modeling

UCI Yeast Dataset (discretized)/ multiclass classification

• 9 variables with BN structure (given)

class variable / 10 classes

• |I| = 60 and dim(θ) = 191

• loss: classification error

• 1484 data points: 1115 (80%) for training and 296 (20%) for testing

Further selection from training examples
• Select instances (s∗, o) such that

max
s

ln p(s | o ; θML)− ln p(s∗ | o ; θML) ≤ δ, δ ≥ 0 : selection level

• Reason: avoid difficult instances
alternative to further selection: set loss differently for each instance in training
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• Reason: avoid difficult instances
alternative to further selection: set loss differently for each instance in training



Overview and Problem Formulation Algorithm Preliminary Experiments Summary

II: Yeast Dataset – a Case Study on Modeling
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B ci = ML weighted by γi > 0
‖θ∗ − θML‖ : 0.18± 0.10

G ci = uniform
‖θ∗ − θML‖ : 4.18± 0.03
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II: Yeast Dataset – a Case Study on Modeling
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G ci = uniform
‖θ∗ − θML‖ : 4.18± 0.03

R ci = 0, use ‖θ‖2 as regularizer
‖θ∗ − θML‖ : 4.82± 0.04
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Discussion

Summary of our algorithm for solving large margin training problems:

• Reparametrization + RSD + proximal point algorithm

• Combine dimensionality reduction, differentiable optimization of feasible
direction type, and regularization

For discriminative training of generative models, need to study

• Tradeoff between faithfulness to the data and discriminative capacity

• Effect of the relaxed sum-of-probabilities constraint

• Combination with structure learning
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