Algorithm 0000000000 Preliminary Experiments

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Efficient Discriminative Training Method for Structured Predictions

Huizhen Yu¹ Dimitri P. Bertsekas² Juho Rousu¹

¹Department of Computer Science University of Helsinki

²Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

MLG08, Helsinki, Finland, Jul. 4-5, 2008

Preliminary Experiments

Summary

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Two Aspects in This Research

New Optimization Approach that can handle very large data sets

- Reparametrization
- Restricted simplicial decomposition
- Proximal point algorithm

Formulation of Discriminative Training of Generative Models

- Max margin
- Control of model deviation
- · Similar formulations exist in the literature

Algorithm 0000000000 Preliminary Experiments

Summary

Overview and Problem Formulation

Algorithm

Preliminary Experiments

Summary

Preliminary Experiments

Summary

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Overview

We consider

- Discriminative training (DT) for structured predictions
 - formulation motivated by SVM (e.g., Collins '02, Altun et al. '03, Taskar et al. '04)
 - enforce "margin constraints"
 - result in large scale optimization problems

We present a new dual optimization algorithm:

- Reparametrization for dimensionality reduction
- Applicable to extended DT formulations with additional parameter constraints and non-quadratic objectives

We focus on a particular type of problem:

- Discriminative training for generative models
 - discrete space DAG, log-linear models
 - supervised learning setting
 - an example of the extended DT formulation

Preliminary Experiments

Summary

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Overview

We consider

- Discriminative training (DT) for structured predictions
 - formulation motivated by SVM (e.g., Collins '02, Altun et al. '03, Taskar et al. '04)
 - enforce "margin constraints"
 - result in large scale optimization problems

We present a new dual optimization algorithm:

- Reparametrization for dimensionality reduction
- Applicable to extended DT formulations with additional parameter constraints and non-quadratic objectives

We focus on a particular type of problem:

- Discriminative training for generative models
 - discrete space DAG, log-linear models
 - supervised learning setting
 - an example of the extended DT formulation

Preliminary Experiments

Summary

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Overview

We consider

- Discriminative training (DT) for structured predictions
 - formulation motivated by SVM (e.g., Collins '02, Altun et al. '03, Taskar et al. '04)
 - enforce "margin constraints"
 - result in large scale optimization problems

We present a new dual optimization algorithm:

- Reparametrization for dimensionality reduction
- Applicable to extended DT formulations with additional parameter constraints and non-quadratic objectives

We focus on a particular type of problem:

- Discriminative training for generative models
 - discrete space DAG, log-linear models
 - supervised learning setting
 - an example of the extended DT formulation

Preliminary Experiments

Setting for Supervised Learning

Consider directed graphical models with discrete spaces

- Examples: Bayesian networks (BN), hidden Markov models (HMM)
- Parameters of the model: a set of log of conditional probabilities

 $\theta = \{\theta_i, i \in \mathcal{I}\}, \quad \theta_i : \ln p(X = \cdot \mid pa_X), \text{ for some variable } X$

• Parameter constraints: $\mathbf{1}' \mathbf{e}^{\theta_i} = \mathbf{1}, i \in \mathcal{I}$

For training:

- Fully observed examples, indexed by $\ensuremath{\mathcal{K}}$
- ∀k ∈ K, specify prediction variables (considered as hidden) and observation variables (non-hidden)
- Prediction variables may be naturally determined by tasks, or, chosen just for the purpose of training
 e.g., choose different subsets of nodes for different exs. to cover the graph
- Optimize *θ* using the SVM-like DT criteria enforce margin constraints

Use of such training: e.g., when prediction accuracy is important, when examples are likely to be dependent

Summary

A D F A 同 F A E F A E F A Q A

Preliminary Experiments

Setting for Supervised Learning

Consider directed graphical models with discrete spaces

- Examples: Bayesian networks (BN), hidden Markov models (HMM)
- Parameters of the model: a set of log of conditional probabilities

 $\theta = \{\theta_i, i \in \mathcal{I}\}, \quad \theta_i : \ln p(X = \cdot \mid pa_X), \text{ for some variable } X$

• Parameter constraints: $\mathbf{1}' \mathbf{e}^{\theta_i} = \mathbf{1}, i \in \mathcal{I}$

For training:

- Fully observed examples, indexed by $\ensuremath{\mathcal{K}}$
- ∀k ∈ K, specify prediction variables (considered as hidden) and observation variables (non-hidden)
- Prediction variables may be naturally determined by tasks, or, chosen just for the purpose of training e.g., choose different subsets of nodes for different exs. to cover the graph
- Optimize *θ* using the SVM-like DT criteria enforce margin constraints

Use of such training: e.g., when prediction accuracy is important, when examples are likely to be dependent

A D F A 同 F A E F A E F A Q A

Preliminary Experiments

Setting for Supervised Learning

Consider directed graphical models with discrete spaces

- Examples: Bayesian networks (BN), hidden Markov models (HMM)
- Parameters of the model: a set of log of conditional probabilities

 $\theta = \{\theta_i, i \in \mathcal{I}\}, \quad \theta_i : \ln p(X = \cdot \mid pa_X), \text{ for some variable } X$

• Parameter constraints: $\mathbf{1}' \mathbf{e}^{\theta_i} = \mathbf{1}, i \in \mathcal{I}$

For training:

- Fully observed examples, indexed by $\ensuremath{\mathcal{K}}$
- ∀k ∈ K, specify prediction variables (considered as hidden) and observation variables (non-hidden)
- Prediction variables may be naturally determined by tasks, or, chosen just for the purpose of training
 e.g., choose different subsets of nodes for different exs. to cover the graph
- Optimize θ using the SVM-like DT criteria enforce margin constraints

Use of such training: e.g., when prediction accuracy is important, when examples are likely to be dependent

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Preliminary Experiments

Formulation of Discriminative Training Problem

Notation: for each example $k \in \mathcal{K}$,

- S_k: the space of all possible prediction outcomes
- (s^*, o) : values of hidden and non-hidden variables, resp.

Introduce margin constraints: $\forall k \in \mathcal{K}, \ \forall s \in \mathcal{S}_k$,

 $\ln p(s, o; \theta) - \ln p(s^*, o; \theta) + l_k(s, s^*) \le \epsilon_k,$

 ϵ_k : positive slack variables for the usual non-ideal case; I_k : loss function

- Meaning: ideally, after training, p(s | o) is peaked at s*
- Write the linear margin constraints equivalently as

$$\sum_{i \in \mathcal{I}} a_{i,k}(s)' \theta_i + b_k(s) \leq \epsilon_k, \ \forall s \in \mathcal{S}_k, \ k \in \mathcal{K}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Preliminary Experiments

Formulation of Discriminative Training Problem

Notation: for each example $k \in \mathcal{K}$,

- S_k: the space of all possible prediction outcomes
- (s^*, o) : values of hidden and non-hidden variables, resp.

Introduce margin constraints: $\forall k \in \mathcal{K}, \forall s \in \mathcal{S}_k$,

 $\ln p(s, o; \theta) - \ln p(s^*, o; \theta) + l_k(s, s^*) \le \epsilon_k,$

 ϵ_k : positive slack variables for the usual non-ideal case; I_k : loss function

- Meaning: ideally, after training, p(s | o) is peaked at s*
- Write the linear margin constraints equivalently as

$$\sum_{i \in \mathcal{I}} a_{i,k}(s)' \theta_i + b_k(s) \leq \epsilon_k, \ \forall s \in \mathcal{S}_k, \ k \in \mathcal{K}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Preliminary Experiments

Formulation of Discriminative Training Problem

Notation: for each example $k \in \mathcal{K}$,

- Sk: the space of all possible prediction outcomes
- (s^*, o) : values of hidden and non-hidden variables, resp.

Introduce margin constraints: $\forall k \in \mathcal{K}, \forall s \in \mathcal{S}_k$,

 $\ln p(s, o; \theta) - \ln p(s^*, o; \theta) + I_k(s, s^*) \le \epsilon_k,$

 ϵ_k : positive slack variables for the usual non-ideal case; I_k : loss function

- Meaning: ideally, after training, $p(s \mid o)$ is peaked at s^*
- · Write the linear margin constraints equivalently as

$$\sum_{i\in\mathcal{I}} a_{i,k}(s)'\theta_i + b_k(s) \leq \epsilon_k, \ \forall s\in\mathcal{S}_k, \ k\in\mathcal{K}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Algorithm 000000000 Preliminary Experiments

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Primal Problem

Formulate training as solving the convex program:

$$\begin{array}{ll} (\mathsf{P}) & \min_{\theta,\epsilon} & -\sum_{i\in\mathcal{I}} c'_i \theta_i + \eta \sum_{k\in\mathcal{K}} \epsilon_k \\ & \text{subj.} \; \sum_{i\in\mathcal{I}} a_{i,k}(s)' \theta_i + b_k(s) \leq \epsilon_k, \;\; \forall s\in\mathcal{S}_k, \; k\in\mathcal{K} \\ \mathbf{1}' e^{\theta_i} = \mathbf{1} & \stackrel{\text{relax to}}{\longrightarrow} & \mathbf{1}' e^{\theta_i} \leq \mathbf{1}, \;\; \forall i\in\mathcal{I} \\ & \theta_i \leq \mathbf{0}, \;\; \forall i\in\mathcal{I}, \;\; \epsilon_k \geq \mathbf{0}, \;\; \forall k\in\mathcal{K} \end{array}$$
(marg.)

Objective function:

• First term : control degree of deviation from certain given parameters

 $-c'_i \theta_i$ comes from KL-divergence $D(p || q) = -\sum_i p_j \ln q_j - H(p)$

 $\forall i$, ln $q: \theta_i$, $c_i \propto p$ = some fixed distribution

p can be e.g., ML estimate, uniform distribution

Second term: penalty for margin violation

Algorithm 000000000 Preliminary Experiments

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Primal Problem

Formulate training as solving the convex program:

$$\begin{array}{ll} (\mathsf{P}) & \min_{\theta,\epsilon} & -\sum_{i\in\mathcal{I}} c'_i \theta_i + \eta \sum_{k\in\mathcal{K}} \epsilon_k \\ & \text{subj.} \; \sum_{i\in\mathcal{I}} a_{i,k}(s)' \theta_i + b_k(s) \leq \epsilon_k, \;\; \forall s\in\mathcal{S}_k, \; k\in\mathcal{K} \\ \mathbf{1}' e^{\theta_i} = \mathbf{1} & \stackrel{\text{relax to}}{\longrightarrow} & \mathbf{1}' e^{\theta_i} \leq \mathbf{1}, \;\; \forall i\in\mathcal{I} \\ & \theta_i \leq \mathbf{0}, \;\; \forall i\in\mathcal{I}, \;\; \epsilon_k \geq \mathbf{0}, \;\; \forall k\in\mathcal{K} \end{array}$$
(marg.)

Objective function:

First term : control degree of deviation from certain given parameters

 $-c'_i \theta_i$ comes from KL-divergence $D(p || q) = -\sum_j p_j \ln q_j - H(p)$

 $\forall i$, ln $q: \theta_i$, $c_i \propto p$ = some fixed distribution

p can be e.g., ML estimate, uniform distribution

· Second term: penalty for margin violation

Algorithm 000000000 Preliminary Experiments

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Primal Problem

Formulate training as solving the convex program:

$$\begin{array}{ll} (\mathsf{P}) & \min_{\theta,\epsilon} & -\sum_{i\in\mathcal{I}} c'_i \theta_i + \eta \sum_{k\in\mathcal{K}} \epsilon_k \\ & \text{subj.} \ \sum_{i\in\mathcal{I}} a_{i,k}(s)' \theta_i + b_k(s) \leq \epsilon_k, \ \forall s\in\mathcal{S}_k, \ k\in\mathcal{K} \end{array} \tag{marg.} \\ \mathbf{1}' e^{\theta_i} = \mathbf{1} & \stackrel{\text{relax to}}{\longrightarrow} & \mathbf{1}' e^{\theta_i} \leq \mathbf{1}, \ \forall i\in\mathcal{I} \\ & \theta_i \leq \mathbf{0}, \ \forall i\in\mathcal{I}, \ \epsilon_k \geq \mathbf{0}, \ \forall k\in\mathcal{K} \end{array}$$

Objective function:

First term : control degree of deviation from certain given parameters

 $-c'_i \theta_i$ comes from KL-divergence $D(p || q) = -\sum_j p_j \ln q_j - H(p)$

 $\forall i$, ln $q: \theta_i$, $c_i \propto p$ = some fixed distribution

p can be e.g., ML estimate, uniform distribution

· Second term: penalty for margin violation

Algorithm

Preliminary Experiments

Summary

Overview and Problem Formulation

Algorithm

Preliminary Experiments

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Preliminary Experiments

Summary

(日) (日) (日) (日) (日) (日) (日)

Reparametrization – Dimensionality Reduction

Margin constraints in (P):

$$\sum_{i\in\mathcal{I}} a_{i,k}(\mathbf{s})'\theta_i + b_k(\mathbf{s}) \le \epsilon_k, \ \forall \mathbf{s}\in\mathcal{S}_k, \ k\in\mathcal{K}$$
(marg.)

Corresponding term in the Lagrangian function \mathcal{L} :

with multipliers $\beta = \{\beta_k(s), k \in \mathcal{K}, s \in \mathcal{S}_k\},\$ $\sum_{k \in \mathcal{K}, s \in \mathcal{S}_k} \beta_k(s) \left(\sum_{i \in \mathcal{I}} a_{i,k}(s)'\theta_i + b_k(s) - \epsilon_k\right)$ $= \sum_{i \in \mathcal{I}} \left(\sum_{k \in \mathcal{K}, s \in \mathcal{S}_k} \beta_k(s) a_{i,k}(s)'\right) \theta_i + \left(\sum_{k \in \mathcal{K}, s \in \mathcal{S}_k} \beta_k(s) b_k(s)\right) - \sum_{k \in \mathcal{K}, s \in \mathcal{S}_k} \beta_k(s) \epsilon_k$ $\stackrel{\text{def}}{=} \mu_i$

- Data-dependent linear transformation of β
- dim (μ_i) = dim (θ_i) , dim (ω) = 1

Preliminary Experiments

Summary

(日) (日) (日) (日) (日) (日) (日)

Reparametrization – Dimensionality Reduction

Margin constraints in (P):

$$\sum_{i\in\mathcal{I}} a_{i,k}(\mathbf{s})'\theta_i + b_k(\mathbf{s}) \le \epsilon_k, \ \forall \mathbf{s}\in\mathcal{S}_k, \ k\in\mathcal{K}$$
(marg.)

Corresponding term in the Lagrangian function \mathcal{L} :

with multipliers $\beta = \{\beta_k(\mathbf{s}), k \in \mathcal{K}, \mathbf{s} \in \mathcal{S}_k\},\$ $\sum_{k \in \mathcal{K}, \mathbf{s} \in \mathcal{S}_k} \beta_k(\mathbf{s}) \left(\sum_{i \in \mathcal{I}} \mathbf{a}_{i,k}(\mathbf{s})'\theta_i + \mathbf{b}_k(\mathbf{s}) - \epsilon_k\right)$ $= \sum_{i \in \mathcal{I}} \left(\sum_{\substack{k \in \mathcal{K}, \mathbf{s} \in \mathcal{S}_k}} \beta_k(\mathbf{s}) \, \mathbf{a}_{i,k}(\mathbf{s})'\right) \theta_i + \left(\sum_{\substack{k \in \mathcal{K}, \mathbf{s} \in \mathcal{S}_k}} \beta_k(\mathbf{s}) \, \mathbf{b}_k(\mathbf{s})\right) - \sum_{\substack{k \in \mathcal{K}, \mathbf{s} \in \mathcal{S}_k}} \beta_k(\mathbf{s}) \, \epsilon_k$ $\stackrel{\text{def}}{=} \mu_i$

- Data-dependent linear transformation of β
- dim (μ_i) = dim (θ_i) , dim (ω) = 1

Preliminary Experiments

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Reparametrization – Dimensionality Reduction

Margin constraints in (P):

$$\sum_{i\in\mathcal{I}} a_{i,k}(\mathbf{s})'\theta_i + b_k(\mathbf{s}) \le \epsilon_k, \ \forall \mathbf{s}\in\mathcal{S}_k, \ k\in\mathcal{K}$$
(marg.)

Corresponding term in the Lagrangian function \mathcal{L} :

with multipliers $\beta = \{\beta_k(s), k \in \mathcal{K}, s \in \mathcal{S}_k\}$,

$$\sum_{k \in \mathcal{K}, s \in \mathcal{S}_{k}} \beta_{k}(s) \left(\sum_{i \in \mathcal{I}} a_{i,k}(s)'\theta_{i} + b_{k}(s) - \epsilon_{k} \right)$$

$$= \sum_{i \in \mathcal{I}} \left(\sum_{\substack{k \in \mathcal{K}, s \in \mathcal{S}_{k}}} \beta_{k}(s) a_{i,k}(s)' \right) \theta_{i} + \left(\sum_{\substack{k \in \mathcal{K}, s \in \mathcal{S}_{k}}} \beta_{k}(s) b_{k}(s) \right) - \sum_{\substack{k \in \mathcal{K}, s \in \mathcal{S}_{k}}} \beta_{k}(s) \epsilon_{k}$$

$$\xrightarrow{\text{def}}_{= \mu_{i}} \omega$$

- Data-dependent linear transformation of β
- dim (μ_i) = dim (θ_i) , dim (ω) = 1

Preliminary Experiments

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Reparametrization – Dimensionality Reduction

Margin constraints in (P):

$$\sum_{i\in\mathcal{I}} a_{i,k}(\mathbf{s})'\theta_i + b_k(\mathbf{s}) \le \epsilon_k, \ \forall \mathbf{s}\in\mathcal{S}_k, \ k\in\mathcal{K}$$
(marg.)

Corresponding term in the Lagrangian function \mathcal{L} :

with multipliers $\beta = \{\beta_k(s), k \in \mathcal{K}, s \in \mathcal{S}_k\},\$

$$\sum_{k \in \mathcal{K}, s \in \mathcal{S}_{k}} \beta_{k}(s) \left(\sum_{i \in \mathcal{I}} a_{i,k}(s)'\theta_{i} + b_{k}(s) - \epsilon_{k} \right)$$

$$= \sum_{i \in \mathcal{I}} \left(\sum_{\substack{k \in \mathcal{K}, s \in \mathcal{S}_{k}}} \beta_{k}(s) a_{i,k}(s)' \right) \theta_{i} + \left(\sum_{\substack{k \in \mathcal{K}, s \in \mathcal{S}_{k}}} \beta_{k}(s) b_{k}(s) \right) - \sum_{\substack{k \in \mathcal{K}, s \in \mathcal{S}_{k}}} \beta_{k}(s) \epsilon_{k}$$

$$\stackrel{\text{def}}{=} \mu_{i}$$

- Data-dependent linear transformation of β
- dim (μ_i) = dim (θ_i) , dim (ω) = 1

Algorithm 000000000 Preliminary Experiments

Summary

Size-Reduced Dual Problem

With an Implicit Set Constraint

Write the dual problem in terms of (μ, ω) instead of β :

$$\begin{array}{ll} \text{(D)} & \max_{\mu,\omega,\lambda} \ \omega - \sum_{i \in \mathcal{I}} \lambda_i + \sum_{i \in \mathcal{I}} q_i(\mu_i,\lambda_i) \\ & \text{subj. } \lambda \geq \mathbf{0}, \ (\mu,\omega) \in \mathcal{D} \end{array}$$

• q_i terms: from minimizing \mathcal{L} w.r.t. primal variables

$$q_i(\mu_i, \lambda_i) = \min_{\theta_i \leq 0} \left[(\mu_i - c_i)' \theta_i + \lambda_i \mathbf{1}' e^{\theta_i} \right]$$

• \mathcal{D} : an implicit set constraint determined by reparametrization

 $\mathcal{D} = \left\{ (\mu, \omega) \, \middle| \, \mu_i = \sum_{k \in \mathcal{K}, s \in \mathcal{S}_k} \beta_k(s) a_{i,k}(s), \ \omega = \sum_{k \in \mathcal{K}, s \in \mathcal{S}_k} \beta_k(s) b_k(s), \right.$ $\beta_k \ge 0, \ \mathbf{1}' \beta_k \le \eta, \forall k \in \mathcal{K} \right\}$

- Dim. of dual function = Dim. of primal variables $+|\mathcal{I}| + 1$
- Size of (D) "independent" of $|\mathcal{S}_k|$ and $|\mathcal{K}|$
- D can be very complicated; apply *feasible direction methods (RSD algorithm)*

Preliminary Experiments

Summary

Size-Reduced Dual Problem

With an Implicit Set Constraint

Write the dual problem in terms of (μ, ω) instead of β :

$$\begin{array}{ll} \text{(D)} & \max_{\mu,\omega,\lambda} \ \omega - \sum_{i \in \mathcal{I}} \lambda_i + \sum_{i \in \mathcal{I}} q_i(\mu_i,\lambda_i) \\ & \text{subj. } \lambda \geq \mathbf{0}, \ (\mu,\omega) \in \mathcal{D} \end{array}$$

• q_i terms: from minimizing \mathcal{L} w.r.t. primal variables

$$q_i(\mu_i, \lambda_i) = \min_{\theta_i \leq 0} \left[(\mu_i - c_i)' \theta_i + \lambda_i \mathbf{1}' e^{\theta_i} \right]$$

• \mathcal{D} : an implicit set constraint determined by reparametrization

$$\mathcal{D} = \left\{ (\mu, \omega) \, \middle| \, \mu_i = \sum_{k \in \mathcal{K}, s \in \mathcal{S}_k} \beta_k(s) \mathbf{a}_{i,k}(s), \ \omega = \sum_{k \in \mathcal{K}, s \in \mathcal{S}_k} \beta_k(s) \mathbf{b}_k(s), \right.$$
$$\beta_k \ge 0, \ \mathbf{1}' \beta_k \le \eta, \forall k \in \mathcal{K} \right\}$$

- Dim. of dual function = Dim. of primal variables $+|\mathcal{I}| + 1$
- Size of (D) "independent" of $|S_k|$ and $|\mathcal{K}|$
- D can be very complicated; apply *feasible direction methods (RSD algorithm)*

Preliminary Experiments

Background: Feasible Direction Methods – Simplicial Decomposition

To deal with an implicit and complicated feasible region:

(1) Make successive inner approximation of the feasible region

- Direction finding subproblems: for $\max_{z \in \mathcal{Z}} Q(z)$, typically solve

 $\max_{z\in\mathcal{Z}} \nabla \mathsf{Q}(z^t)'(z-z^t)$

In our case: "loss-augmented inference" (exact or approximate)

- (2) Optimize the function over inner approximations
 - Master problems

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Preliminary Experiments

Background: Feasible Direction Methods – Simplicial Decomposition

To deal with an implicit and complicated feasible region:

(1) Make successive inner approximation of the feasible region

- Direction finding subproblems: for $\max_{z \in \mathcal{Z}} Q(z)$, typically solve

 $\max_{z\in\mathcal{Z}} \nabla \mathsf{Q}(z^t)'(z-z^t)$

In our case: "loss-augmented inference" (exact or approximate)

- (2) Optimize the function over inner approximations
 - Master problems

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Preliminary Experiments

Background: Feasible Direction Methods – Simplicial Decomposition

To deal with an implicit and complicated feasible region:

- (1) Make successive inner approximation of the feasible region
 - Direction finding subproblems: for $\max_{z \in \mathcal{Z}} Q(z)$, typically solve

 $\max_{z\in\mathcal{Z}} \nabla \mathsf{Q}(z^t)'(z-z^t)$

In our case: "loss-augmented inference" (exact or approximate)

(2) Optimize the function over inner approximations

- Master problems

Preliminary Experiments 0000 Summary

Restricted Simplicial Decomposition (RSD)

RSD (Hearn et al. '87):

- Set an upper limit to the dimension of the simplex: complexity of master problems independent of the original problem
- Apply a projected Newton method (Bertsekas '82) to solve master problems: superlinear convergence, finite convergence for quadratic objective

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 = の々で

Preliminary Experiments 0000 Summary

Restricted Simplicial Decomposition (RSD)

RSD (Hearn et al. '87):

- Set an upper limit to the dimension of the simplex: complexity of master problems independent of the original problem
- Apply a projected Newton method (Bertsekas '82) to solve master problems: superlinear convergence, finite convergence for quadratic objective

イロト 不良 とくほ とくほう 二日

Algorithm 0000000000 Preliminary Experiments

Algorithm: Reparametrization + RSD + ···

Motivation for Applying the Proximal Point Algorithm

Difficulty of applying RSD directly to solve (D):

• The dual function is not everywhere real-valued (unlike the QP case)

 μ needs to satisfy: $\mu_i \leq c_i, i \in \mathcal{I}$

Finding a point in $\{(\mu, \omega) \mid \mu_i \leq c_i, i \in \mathcal{I}, \omega \in \Re\} \cap \mathcal{D}$ is costly.

Solution:

- Add a quadratic term $\frac{\gamma_0}{2} \|\theta \theta^0\|^2$ to (P)
- Moving the center θ⁰ in a certain way to approach an optimal solution of (P) – known as the *proximal point algorithm*:

Exact form: to solve
$$\min_{x \in X} f(x)$$
, iterate
 $x^{n+1} = \underset{x \in X}{\arg \min} \left[f(x) + \frac{\gamma_n}{2} ||x - x^n||^2 \right]$, with $\gamma_n \ge 0$, $sup_n \gamma_n < \infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Preliminary Experiments

Algorithm: Reparametrization + RSD + ···

Motivation for Applying the Proximal Point Algorithm

Difficulty of applying RSD directly to solve (D):

• The dual function is not everywhere real-valued (unlike the QP case)

```
\mu needs to satisfy: \mu_i \leq c_i, i \in \mathcal{I}
```

Finding a point in $\{(\mu, \omega) \mid \mu_i \leq c_i, i \in \mathcal{I}, \omega \in \Re\} \cap \mathcal{D}$ is costly.

Solution:

- Add a quadratic term $\frac{\gamma_0}{2} \|\theta \theta^0\|^2$ to (P)
- Moving the center θ⁰ in a certain way to approach an optimal solution of (P) – known as the *proximal point algorithm*:

Exact form: to solve
$$\min_{x \in X} f(x)$$
, iterate
 $x^{n+1} = \underset{x \in X}{\operatorname{arg\,min}} \left[f(x) + \frac{\gamma_n}{2} \|x - x^n\|^2 \right], \text{ with } \gamma_n \ge 0, \ \sup_{x \in X} \gamma_n < \infty.$

・ロト・西ト・西ト・西ト・日・ (の)

Preliminary Experiments

Dual Proximal Point Algorithm

We solve a sequence of regularized primal problems by dual optimization with reparametrization and RSD:

$$\begin{aligned} (\mathsf{P}_n) \qquad \min_{\theta,\epsilon} & -\sum_{i\in\mathcal{I}} c_i'\theta_i + \eta\sum_{k\in\mathcal{K}} \epsilon_k + \frac{\gamma_n}{2} \|\theta - \theta^n\|^2 \\ & \text{subj.} \sum_{i\in\mathcal{I}} a_{i,k}(s)'\theta_i + b_k(s) \leq \epsilon_k, \, \forall s\in\mathcal{S}_k, \, k\in\mathcal{K} \\ & \mathbf{1}'e^{\theta_i} < \mathbf{1}, \, \, \forall i\in\mathcal{I}, \quad \epsilon_k > \mathbf{0}, \, \, \forall k\in\mathcal{K} \end{aligned}$$

$$\begin{aligned} & (\mathsf{D}_n) & \max_{\mu,\omega,\lambda} \ \omega - \sum_{i \in \mathcal{I}} \lambda_i + \sum_{i \in \mathcal{I}} q_i^n(\mu_i,\lambda_i) \\ & \text{subj. } \lambda \geq \mathsf{0}, \ (\mu,\omega) \in \mathcal{D} \end{aligned} \\ & \text{where} \quad q_i^n(\mu_i,\lambda_i) = \min_{\theta_i \in \Re^{d_i}} \Big[(\mu_i - c_i)'\theta_i + \lambda_i \mathbf{1}' e^{\theta_i} + \frac{\gamma_n}{2} \|\theta_i - \theta_i^n\|^2 \Big]. \end{aligned}$$

- Can efficiently evaluate *q*^{*n*} (Newton's method, global quadratic convergence) and its 1st and 2nd order derivatives
- \mathcal{D} does not depend on θ^n

Preliminary Experiments

Dual Proximal Point Algorithm

We solve a sequence of regularized primal problems by dual optimization with reparametrization and RSD:

$$\begin{aligned} (\mathsf{P}_n) \qquad \min_{\theta,\epsilon} & -\sum_{i\in\mathcal{I}} c'_i \theta_i + \eta \sum_{k\in\mathcal{K}} \epsilon_k + \frac{\gamma_n}{2} \|\theta - \theta^n\|^2 \\ & \text{subj.} \sum_{i\in\mathcal{I}} a_{i,k}(s)' \theta_i + b_k(s) \leq \epsilon_k, \, \forall s\in\mathcal{S}_k, \, k\in\mathcal{K} \\ & \mathbf{1}' e^{\theta_i} < \mathbf{1}, \, \, \forall i\in\mathcal{I}, \quad \epsilon_k > \mathbf{0}, \, \, \forall k\in\mathcal{K} \end{aligned}$$

$$\begin{array}{ll} (\mathsf{D}_n) & \max_{\mu,\omega,\lambda} \ \omega - \sum_{i \in \mathcal{I}} \lambda_i + \sum_{i \in \mathcal{I}} q_i^n(\mu_i,\lambda_i) \\ & \text{subj. } \lambda \geq 0, \ (\mu,\omega) \in \mathcal{D} \\ \end{array} \\ \text{where} & q_i^n(\mu_i,\lambda_i) = \min_{\theta_i \in \Re^{d_i}} \Big[(\mu_i - c_i)'\theta_i + \lambda_i \mathbf{1}' e^{\theta_i} + \frac{\gamma_n}{2} \|\theta_i - \theta_i^n\|^2 \Big]. \end{array}$$

- Can efficiently evaluate q_i^n (Newton's method, global quadratic convergence) and its 1st and 2nd order derivatives
- \mathcal{D} does not depend on θ^n

Preliminary Experiments

Summary

Algorithm Chart from Dual Viewpoint

Algorithm 00000000000 Preliminary Experiments

Summary

Algorithm Variants with Same Idea

Alternative reparametrization for working sets:

- Partition training data $\mathcal{K} = \mathcal{K}_1 \cup \mathcal{K}_2 \cup \cdots \cup \mathcal{K}_m$
- Introduce (μ^j, ω^j), j = 1,..., m by grouping respective terms in L:

$$\sum_{i \in \mathcal{I}} \Big(\sum_{j=1}^{m} \underbrace{\sum_{k \in \mathcal{K}_{j}, s \in \mathcal{S}_{k}} \beta_{k}(s) a_{i,k}(s)'}_{\frac{\det}{g} \mu^{j}} \Big) \theta_{i} + \Big(\sum_{j=1}^{m} \underbrace{\sum_{k \in \mathcal{K}_{j}, s \in \mathcal{S}_{k}} \beta_{k}(s) b_{k}(s)}_{\frac{\det}{g} \omega^{j}} \Big)$$

• Dual problem with implicit set constraints $(\mu^j, \omega^j) \in D_j, j = 1, ..., m$ relation with the first reparametrization:

$$\mu = \sum_{j=1}^{m} \mu^{j}, \quad \omega = \sum_{j=1}^{m} \omega^{j}, \quad \mathcal{D} = \mathcal{D}_{1} + \mathcal{D}_{2} + \dots + \mathcal{D}_{m}$$

 Special case/connection with cutting plane-like methods: singleton K_j, m = |K|

Preliminary Experiments

Summary

(ロ) (同) (三) (三) (三) (○) (○)

Algorithm Variants with Same Idea

Further remarks on reparametrization:

- Arbitrary and varying working sets can also be handled in the first reparametrization (μ, ω) : use the inner approximation view
- For different margin violation penalties: e.g., quadratic or loss-rescaled slacks (Tsochantaridis et al. '05); D may be unbounded, but the same algorithm can be applied.

Note:

- Reparametrization preserves the inference problem structure
- On use of working sets: proper batch size + coordinate ascent trades off the complexity of direction finding subproblems with that of master problems, and achieves overall efficiency.

Algorithm 0000000000 Preliminary Experiments

Outline

Overview and Problem Formulation

Algorithm

Preliminary Experiments

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Algorithm 0000000000 Preliminary Experiments

Summary

ъ.

I: the Synthetic HMM Example

HMM with 10 states and 7 observations:

- Training: 1000 seq. of length 50, c_i = uniform
- Test: 100 seq. of length 50, average over 10 runs measure loss on MAP state seq. loss: distance on the ring

Comparison of the dimensionalities of dual variables:

• $|\mathcal{I}| = 21$, dim $(\theta) = 180$, dim $(\beta) = 1000 \times 10^{50}$

- reparametrization w/ m working sets: dim = m × 181 + 21
- "edge-wise"/"marginal polytope" parametrization: dim = 1000 × 50 × (10 × 10) + 21

Algorithm 0000000000 Preliminary Experiments

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

II: Yeast Dataset – a Case Study on Modeling

UCI Yeast Dataset (discretized)/ multiclass classification

• 9 variables with BN structure (given)

- $|\mathcal{I}| = 60$ and dim $(\theta) = 191$
- loss: classification error
- 1484 data points: 1115 (80%) for training and 296 (20%) for testing

Further selection from training examples

• Select instances (s*, o) such that

 $\max_{s} \ln p(s \mid o; \theta_{ML}) - \ln p(s^* \mid o; \theta_{ML}) \le \delta, \quad \delta \ge 0: \text{ selection level}$

 Reason: avoid difficult instances alternative to further selection: set loss differently for each instance in training

Preliminary Experiments

II: Yeast Dataset – a Case Study on Modeling

UCI Yeast Dataset (discretized)/ multiclass classification

• 9 variables with BN structure (given)

- |*I*| = 60 and dim(θ) = 191
- loss: classification error
- 1484 data points: 1115 (80%) for training and 296 (20%) for testing

Further selection from training examples

• Select instances (s*, o) such that

 $\max_{s} \ln p(s \mid o; \theta_{ML}) - \ln p(s^* \mid o; \theta_{ML}) \le \delta, \ \ \delta \ge 0: \ \, \text{selection level}$

 Reason: avoid difficult instances alternative to further selection: set loss differently for each instance in training

Preliminary Experiments 0000

II: Yeast Dataset – a Case Study on Modeling

Preliminary Experiments 0000

II: Yeast Dataset – a Case Study on Modeling

Algorithm 0000000000 Preliminary Experiments

Summary

Overview and Problem Formulation

Algorithm

Preliminary Experiments

Summary

Preliminary Experiments

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Summary of our algorithm for solving large margin training problems:

- Reparametrization + RSD + proximal point algorithm
- Combine dimensionality reduction, differentiable optimization of feasible direction type, and regularization

For discriminative training of generative models, need to study

- Tradeoff between faithfulness to the data and discriminative capacity
- · Effect of the relaxed sum-of-probabilities constraint
- Combination with structure learning