Efficient Discriminative Training Method for Structured Predictions

Huizhen $\mathrm{Yu}^{1} \quad$ Dimitri P. Bertsekas ${ }^{2}$ Juho Rousu ${ }^{1}$
${ }^{1}$ Department of Computer Science
University of Helsinki
${ }^{2}$ Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
MLG08, Helsinki, Finland, Jul. 4-5, 2008

Two Aspects in This Research

New Optimization Approach that can handle very large data sets

- Reparametrization
- Restricted simplicial decomposition
- Proximal point algorithm

Formulation of Discriminative Training of Generative Models

- Max margin
- Control of model deviation
- Similar formulations exist in the literature

Outline

Overview and Problem Formulation

Algorithm

Preliminary Experiments

Summary

Overview

We consider

- Discriminative training (DT) for structured predictions
- formulation motivated by SVM
(e.g., Collins '02, Altun et al. '03, Taskar et al. '04)
- enforce "margin constraints"
- result in large scale optimization problems

We present a new dual optimization algorithm:
 - Reparametrization for dimensionality reduction
 - Applicable to extended DT formulations
 with additional parameter constraints and non-quadratic objectives

We focus on a particular type of problem:

- Discriminative training for generative models
- discrete space DAG, log-linear models
- supervised learning setting
- an example of the extended DT formulation

Overview

We consider

- Discriminative training (DT) for structured predictions
- formulation motivated by SVM (e.g., Collins '02, Altun et al. '03, Taskar et al. '04)
- enforce "margin constraints"
- result in large scale optimization problems

We present a new dual optimization algorithm:

- Reparametrization for dimensionality reduction
- Applicable to extended DT formulations with additional parameter constraints and non-quadratic objectives

We focus on a particular type of problem:

- Discriminative training for generative models
- discrete space DAG, log-linear models
- supervised learning setting
- an example of the extended DT formulation

Overview

We consider

- Discriminative training (DT) for structured predictions
- formulation motivated by SVM (e.g., Collins '02, Altun et al. '03, Taskar et al. '04)
- enforce "margin constraints"
- result in large scale optimization problems

We present a new dual optimization algorithm:

- Reparametrization for dimensionality reduction
- Applicable to extended DT formulations with additional parameter constraints and non-quadratic objectives

We focus on a particular type of problem:

- Discriminative training for generative models
- discrete space DAG, log-linear models
- supervised learning setting
- an example of the extended DT formulation

Setting for Supervised Learning

Consider directed graphical models with discrete spaces

- Examples: Bayesian networks (BN), hidden Markov models (HMM)
- Parameters of the model: a set of log of conditional probabilities

$$
\theta=\left\{\theta_{i}, i \in \mathcal{I}\right\}, \quad \theta_{i}: \ln p\left(X=\cdot \mid p a_{X}\right), \text { for some variable } X
$$

- Parameter constraints: $\mathbf{1}^{\prime} e^{\theta_{i}}=1, i \in \mathcal{I}$

For training:

- Fully observed examples, indexed by \mathcal{K}
- $\forall k \in \mathcal{K}$, specify prediction variables (considered as hidden) and observation variables (non-hidden)
- Prediction variables may be naturally determined by tasks, or, chosen just for the purpose of training e.g., choose dilferent subsets of nodes for dilferent exs. to cover the graph
- Optimize θ using the SVM-like DT criteria enforce margin constraints

Setting for Supervised Learning

Consider directed graphical models with discrete spaces

- Examples: Bayesian networks (BN), hidden Markov models (HMM)
- Parameters of the model: a set of log of conditional probabilities

$$
\theta=\left\{\theta_{i}, i \in \mathcal{I}\right\}, \quad \theta_{i}: \ln p\left(X=\cdot \mid p a_{X}\right), \quad \text { for some variable } X
$$

- Parameter constraints: $1^{\prime} e^{\theta_{i}}=1, i \in \mathcal{I}$

For training:

- Fully observed examples, indexed by \mathcal{K}
- $\forall k \in \mathcal{K}$, specify prediction variables (considered as hidden) and observation variables (non-hidden)
- Prediction variables may be naturally determined by tasks, or, chosen just for the purpose of training e.g., choose different subsets of nodes for different exs. to cover the graph
- Optimize θ using the SVM-like DT criteria enforce margin constraints

Setting for Supervised Learning

Consider directed graphical models with discrete spaces

- Examples: Bayesian networks (BN), hidden Markov models (HMM)
- Parameters of the model: a set of log of conditional probabilities

$$
\theta=\left\{\theta_{i}, i \in \mathcal{I}\right\}, \quad \theta_{i}: \ln p\left(X=\cdot \mid p a_{X}\right), \quad \text { for some variable } X
$$

- Parameter constraints: $1^{\prime} e^{\theta_{i}}=1, i \in \mathcal{I}$

For training:

- Fully observed examples, indexed by \mathcal{K}
- $\forall k \in \mathcal{K}$, specify prediction variables (considered as hidden) and observation variables (non-hidden)
- Prediction variables may be naturally determined by tasks, or, chosen just for the purpose of training e.g., choose different subsets of nodes for different exs. to cover the graph
- Optimize θ using the SVM-like DT criteria enforce margin constraints

Use of such training: e.g., when prediction accuracy is important, when examples are likely to be dependent

Formulation of Discriminative Training Problem

Notation: for each example $k \in \mathcal{K}$,

- \mathcal{S}_{k} : the space of all possible prediction outcomes
- $\left(s^{*}, o\right)$: values of hidden and non-hidden variables, resp.

Introduce margin constraints: $\forall k \in \mathcal{K}, \forall s \in \mathcal{S}_{k}$,

ϵ_{k} : positive slack variables for the usual non-ideal case; I_{k} : loss function

- Meaning: ideally, after training, $p^{\prime}\left(s^{\prime} \mid 0\right)$ is peaked at s^{*}
- Write the linear margin constraints equivalently as

Formulation of Discriminative Training Problem

Notation: for each example $k \in \mathcal{K}$,

- \mathcal{S}_{k} : the space of all possible prediction outcomes
- $\left(s^{*}, o\right)$: values of hidden and non-hidden variables, resp.

Introduce margin constraints: $\forall k \in \mathcal{K}, \forall s \in \mathcal{S}_{k}$,

$$
\ln p(s, o ; \theta)-\ln p\left(s^{*}, o ; \theta\right)+I_{k}\left(s, s^{*}\right) \leq \epsilon_{k}
$$

ϵ_{k} : positive slack variables for the usual non-ideal case; I_{k} : loss function

- Meaning: ideally, after training, $p(s \mid O)$ is peaked at s^{*}
- Write the linear margin constraints equivalently as

Formulation of Discriminative Training Problem

Notation: for each example $k \in \mathcal{K}$,

- \mathcal{S}_{k} : the space of all possible prediction outcomes
- $\left(s^{*}, o\right)$: values of hidden and non-hidden variables, resp.

Introduce margin constraints: $\forall k \in \mathcal{K}, \forall s \in \mathcal{S}_{k}$,

$$
\ln p(s, o ; \theta)-\ln p\left(s^{*}, o ; \theta\right)+I_{k}\left(s, s^{*}\right) \leq \epsilon_{k},
$$

ϵ_{k} : positive slack variables for the usual non-ideal case; I_{k} : loss function

- Meaning: ideally, after training, $p(s \mid o)$ is peaked at s^{*}
- Write the linear margin constraints equivalently as

$$
\sum_{i \in \mathcal{I}} a_{i, k}(s)^{\prime} \theta_{i}+b_{k}(s) \leq \epsilon_{k}, \quad \forall s \in \mathcal{S}_{k}, k \in \mathcal{K}
$$

Primal Problem

Formulate training as solving the convex program:

$$
\begin{aligned}
& \text { (P) } \quad \begin{aligned}
\min _{\theta, \epsilon} & -\sum_{i \in \mathcal{I}} c_{i}^{\prime} \theta_{i}+\eta \sum_{k \in \mathcal{K}} \epsilon_{k} \\
\text { subj. } & \sum_{i \in \mathcal{I}} a_{i, k}(s)^{\prime} \theta_{i}+b_{k}(s) \leq \epsilon_{k}, \quad \forall s \in \mathcal{S}_{k}, k \in \mathcal{K} \\
= & \mathbf{1}^{\prime} e^{\theta_{i}} \leq 1, \forall i \in \mathcal{I} \\
& \theta_{i} \leq 0, \quad \forall i \in \mathcal{I}, \quad \epsilon_{k} \geq 0, \quad \forall k \in \mathcal{K}
\end{aligned}
\end{aligned}
$$

Objective function:

- First term : control degree of deviation from certain given parameters $-c_{i}^{\prime} \theta_{j}$ comes from KL-divergence $D(p \| q)=-\sum_{j} p_{j} \ln q_{j}-H(p)$

Primal Problem

Formulate training as solving the convex program:

$$
\begin{align*}
& \text { (P) } \quad \min _{\theta, \epsilon}-\sum_{i \in \mathcal{I}} c_{i}^{\prime} \theta_{i}+\eta \sum_{k \in \mathcal{K}} \epsilon_{k} \\
& \text { subj. } \sum_{i \in \mathcal{I}} a_{i, k}(s)^{\prime} \theta_{i}+b_{k}(s) \leq \epsilon_{k}, \quad \forall s \in \mathcal{S}_{k}, k \in \mathcal{K} \tag{marg.}\\
& =1 \\
& \mathbf{1}^{\prime} e^{\theta_{i}} \leq 1, \forall i \in \mathcal{I} \\
& \\
& \theta_{i} \leq 0, \quad \forall i \in \mathcal{I}, \quad \epsilon_{k} \geq 0, \quad \forall k \in \mathcal{K}
\end{align*}
$$

Objective function:

- First term : control degree of deviation from certain given parameters
$-c_{i}^{\prime} \theta_{i}$ comes from KL-divergence $D(p \| q)=-\sum_{j} p_{j} \ln q_{j}-H(p)$
$\forall i, \quad \ln q: \theta_{i}, \quad c_{i} \propto p=$ some fixed distribution
p can be e.g., ML estimate, uniform distribution
- Second term: penalty for margin violation

Primal Problem

Formulate training as solving the convex program:

$$
\begin{align*}
& \text { (P) } \quad \min _{\theta, \epsilon}-\sum_{i \in \mathcal{I}} c_{i}^{\prime} \theta_{i}+\eta \sum_{k \in \mathcal{K}} \epsilon_{k} \\
& \text { subj. } \sum_{i \in \mathcal{I}} a_{i, k}(s)^{\prime} \theta_{i}+b_{k}(s) \leq \epsilon_{k}, \quad \forall s \in \mathcal{S}_{k}, k \in \mathcal{K} \tag{marg.}\\
& \mathbf{1}^{\prime} e^{\theta_{i}}=1 \stackrel{\text { relax to }}{ } \quad \mathbf{1}^{\prime} e^{\theta_{i}} \leq 1, \forall i \in \mathcal{I} \\
& \\
& \theta_{i} \leq 0, \quad \forall i \in \mathcal{I}, \quad \epsilon_{k} \geq 0, \quad \forall k \in \mathcal{K}
\end{align*}
$$

Objective function:

- First term : control degree of deviation from certain given parameters
$-c_{i}^{\prime} \theta_{i}$ comes from KL-divergence $D(p \| q)=-\sum_{j} p_{j} \ln q_{j}-H(p)$
$\forall i, \quad \ln q: \theta_{i}, \quad c_{i} \propto p=$ some fixed distribution
p can be e.g., ML estimate, uniform distribution
- Second term: penalty for margin violation

Outline

Overview and Problem Formulation

Algorithm

Preliminary Experiments

Summary

Reparametrization - Dimensionality Reduction

Margin constraints in (P):

$$
\begin{equation*}
\sum_{i \in \mathcal{I}} a_{i, k}(s)^{\prime} \theta_{i}+b_{k}(s) \leq \epsilon_{k}, \quad \forall s \in \mathcal{S}_{k}, k \in \mathcal{K} \tag{marg.}
\end{equation*}
$$

Corresponding term in the Lagrangian function \mathcal{L} :
with multipliers $\beta=\left\{\beta_{k}(s), k \in \mathcal{K}, s \in \mathcal{S}_{k}\right\}$,

$$
\sum_{k \in \mathcal{K}, s \in \mathcal{S}_{k}} \beta_{k}(s)\left(\sum_{i \in \mathcal{I}} a_{i, k}(s)^{\prime} \theta_{i}+b_{k}(s)-\epsilon_{k}\right)
$$

- Data-dependent linear transformation of β
- $\operatorname{dim}\left(\mu_{i}\right)=\operatorname{dim}\left(\theta_{i}\right), \operatorname{dim}(\omega)=1$

Reparametrization - Dimensionality Reduction

Margin constraints in (P):

$$
\begin{equation*}
\sum_{i \in \mathcal{I}} a_{i, k}(s)^{\prime} \theta_{i}+b_{k}(s) \leq \epsilon_{k}, \quad \forall s \in \mathcal{S}_{k}, k \in \mathcal{K} \tag{marg.}
\end{equation*}
$$

Corresponding term in the Lagrangian function \mathcal{L} :
with multipliers $\beta=\left\{\beta_{k}(s), k \in \mathcal{K}, s \in \mathcal{S}_{k}\right\}$,

$$
\begin{aligned}
& \sum_{k \in \mathcal{K}, s \in \mathcal{S}_{k}} \beta_{k}(s)\left(\sum_{i \in \mathcal{I}} a_{i, k}(s)^{\prime} \theta_{i}+b_{k}(s)-\epsilon_{k}\right) \\
= & \sum_{i \in \mathcal{I}}\left(\sum_{k \in \mathcal{K}, s \in \mathcal{S}_{k}} \beta_{k}(s) a_{i, k}(s)^{\prime}\right) \theta_{i}+\left(\sum_{k \in \mathcal{K}, s \in \mathcal{S}_{k}} \beta_{k}(s) b_{k}(s)\right)-\sum_{k \in \mathcal{K}, s \in \mathcal{S}_{k}} \beta_{k}(s) \epsilon_{k}
\end{aligned}
$$

- Data-dependent linear transformation of β
- $\operatorname{dim}\left(\mu_{i}\right)=\operatorname{dim}\left(\theta_{i}\right), \operatorname{dim}(\omega)=1$

Reparametrization - Dimensionality Reduction

Margin constraints in (P):

$$
\begin{equation*}
\sum_{i \in \mathcal{I}} a_{i, k}(s)^{\prime} \theta_{i}+b_{k}(s) \leq \epsilon_{k}, \quad \forall s \in \mathcal{S}_{k}, k \in \mathcal{K} \tag{marg.}
\end{equation*}
$$

Corresponding term in the Lagrangian function \mathcal{L} :
with multipliers $\beta=\left\{\beta_{k}(s), k \in \mathcal{K}, s \in \mathcal{S}_{k}\right\}$,

$$
\begin{gathered}
\sum_{k \in \mathcal{K}, s \in \mathcal{S}_{k}} \beta_{k}(s)\left(\sum_{i \in \mathcal{I}} a_{i, k}(s)^{\prime} \theta_{i}+b_{k}(s)-\epsilon_{k}\right) \\
=\sum_{i \in \mathcal{I}}\left(\sum_{k \in \mathcal{K}, s \in \mathcal{S}_{k}} \beta_{k}(s) a_{i, k}(s)^{\prime}\right) \theta_{i}+\left(\sum_{k \in \mathcal{K}, s \in \mathcal{S}_{k}} \beta_{k}(s) b_{k}(s)\right)-\sum_{k \in \mathcal{K}, s \in \mathcal{S}_{k}} \beta_{k}(s) \epsilon_{k} \\
\quad \stackrel{\text { def }}{=} \mu_{i} \omega
\end{gathered}
$$

- Data-dependent linear transformation of β
- $\operatorname{dim}\left(\mu_{i}\right)=\operatorname{dim}\left(\theta_{i}\right), \operatorname{dim}(\omega)=1$

Reparametrization - Dimensionality Reduction

Margin constraints in (P):

$$
\begin{equation*}
\sum_{i \in \mathcal{I}} a_{i, k}(s)^{\prime} \theta_{i}+b_{k}(s) \leq \epsilon_{k}, \quad \forall s \in \mathcal{S}_{k}, k \in \mathcal{K} \tag{marg.}
\end{equation*}
$$

Corresponding term in the Lagrangian function \mathcal{L} :
with multipliers $\beta=\left\{\beta_{k}(s), k \in \mathcal{K}, s \in \mathcal{S}_{k}\right\}$,

$$
\begin{gathered}
\sum_{k \in \mathcal{K}, s \in \mathcal{S}_{k}} \beta_{k}(s)\left(\sum_{i \in \mathcal{I}} a_{i, k}(s)^{\prime} \theta_{i}+b_{k}(s)-\epsilon_{k}\right) \\
=\sum_{i \in \mathcal{I}}\left(\sum_{k \in \mathcal{K}, s \in \mathcal{S}_{k}} \beta_{k}(s) a_{i, k}(s)^{\prime}\right) \theta_{i}+\left(\sum_{k \in \mathcal{K}, s \in \mathcal{S}_{k}} \beta_{k}(s) b_{k}(s)\right)-\sum_{k \in \mathcal{K}, s \in \mathcal{S}_{k}} \beta_{k}(s) \epsilon_{k} \\
\quad \stackrel{\text { def }}{=} \mu_{i} \omega
\end{gathered}
$$

- Data-dependent linear transformation of β
- $\operatorname{dim}\left(\mu_{i}\right)=\operatorname{dim}\left(\theta_{i}\right), \operatorname{dim}(\omega)=1$

Size-Reduced Dual Problem

With an Implicit Set Constraint
Write the dual problem in terms of (μ, ω) instead of β :
(D)

$$
\begin{aligned}
& \max _{\mu, \omega, \lambda} \omega-\sum_{i \in \mathcal{I}} \lambda_{i}+\sum_{i \in \mathcal{I}} q_{i}\left(\mu_{i}, \lambda_{i}\right) \\
& \text { subj. } \lambda \geq 0, \quad(\mu, \omega) \in \mathcal{D}
\end{aligned}
$$

- q_{i} terms: from minimizing \mathcal{L} w.r.t. primal variables

$$
q_{i}\left(\mu_{i}, \lambda_{i}\right)=\min _{\theta_{i} \leq 0}\left[\left(\mu_{i}-c_{i}\right)^{\prime} \theta_{i}+\lambda_{i} \mathbf{1}^{\prime} e^{\theta_{i}}\right]
$$

- \mathcal{D} : an implicit set constraint determined by reparametrization

$$
\begin{aligned}
\mathcal{D}=\{ & \left\{(\mu, \omega) \mid \mu_{i}=\sum_{k \in \mathcal{K}, s \in \mathcal{S}_{k}} \beta_{k}(s) a_{i, k}(s), \omega=\sum_{k \in \mathcal{K}, s \in \mathcal{S}_{k}} \beta_{k}(s) b_{k}(s),\right. \\
& \left.\beta_{k} \geq 0, \mathbf{1}^{\prime} \beta_{k} \leq \eta, \forall k \in \mathcal{K}\right\}
\end{aligned}
$$

- Dim. of dual function $=$ Dim. of primal variables $+|I|+1$
- Size of (D) "independent" of $\left|\mathcal{S}_{k}\right|$ and $|\mathcal{K}|$
- D can be very complicated; apply feasible direction methods (RSD algorithm)

Size-Reduced Dual Problem

With an Implicit Set Constraint
Write the dual problem in terms of (μ, ω) instead of β :
(D)

$$
\begin{aligned}
& \max _{\mu, \omega, \lambda} \omega-\sum_{i \in \mathcal{I}} \lambda_{i}+\sum_{i \in \mathcal{I}} q_{i}\left(\mu_{i}, \lambda_{i}\right) \\
& \text { subj. } \lambda \geq 0, \quad(\mu, \omega) \in \mathcal{D}
\end{aligned}
$$

- q_{i} terms: from minimizing \mathcal{L} w.r.t. primal variables

$$
q_{i}\left(\mu_{i}, \lambda_{i}\right)=\min _{\theta_{i} \leq 0}\left[\left(\mu_{i}-c_{i}\right)^{\prime} \theta_{i}+\lambda_{i} \mathbf{1}^{\prime} e^{\theta_{i}}\right]
$$

- \mathcal{D} : an implicit set constraint determined by reparametrization

$$
\begin{aligned}
\mathcal{D}=\{ & (\mu, \omega) \mid \mu_{i}=\sum_{k \in \mathcal{K}, s \in \mathcal{S}_{k}} \beta_{k}(s) a_{i, k}(s), \omega=\sum_{k \in \mathcal{K}, s \in \mathcal{S}_{k}} \beta_{k}(s) b_{k}(s), \\
& \left.\beta_{k} \geq 0,1^{\prime} \beta_{k} \leq \eta, \forall k \in \mathcal{K}\right\}
\end{aligned}
$$

- Dim. of dual function $=$ Dim. of primal variables $+|\mathcal{I}|+1$
- Size of (D) "independent" of $\left|\mathcal{S}_{k}\right|$ and $|\mathcal{K}|$
- \mathcal{D} can be very complicated; apply feasible direction methods (RSD algorithm)

Background: Feasible Direction Methods Simplicial Decomposition

To deal with an implicit and complicated feasible region:
(1) Make successive inner approximation of the feasible region

- Direction finding subproblems:
for $\max _{z \in \mathcal{Z}} Q(z)$, typically solve

In our case: "loss-augmented inference" (exact or approximate)
(2) Optimize the function over inner approximations

- Master problems

Background: Feasible Direction Methods Simplicial Decomposition

To deal with an implicit and complicated feasible region:
(1) Make successive inner approximation of the feasible region

- Direction finding subproblems:
for $\max _{z \in \mathcal{Z}} Q(z)$, typically solve

In our case: "loss-augmented inference" (exact or approximate)
(2) Optimize the function over inner approximations

- Master problems

Background: Feasible Direction Methods Simplicial Decomposition

To deal with an implicit and complicated feasible region:
(1) Make successive inner approximation of the feasible region

- Direction finding subproblems: for $\max _{z \in \mathcal{Z}} Q(z)$, typically solve

$$
\max _{z \in \mathcal{Z}} \nabla Q\left(z^{t}\right)^{\prime}\left(z-z^{t}\right)
$$

In our case: "loss-augmented inference" (exact or approximate)
(2) Optimize the function over inner approximations

- Master problems

Restricted Simplicial Decomposition (RSD)

RSD (Hearn et al. '87):

- Set an upper limit to the dimension of the simplex: complexity of master problems independent of the original problem
- Apply a projected Newton method (Bertsekas '82) to solve master problems: superlinear convergence, finite
convergence for quadratic objective

Restricted Simplicial Decomposition (RSD)

RSD (Hearn et al. '87):

- Set an upper limit to the dimension of the simplex: complexity of master problems independent of the original problem
- Apply a projected Newton method (Bertsekas '82) to solve master problems: superlinear convergence, finite convergence for quadratic objective

Algorithm: Reparametrization + RSD $+\cdots$

Motivation for Applying the Proximal Point Algorithm

Difficulty of applying RSD directly to solve (D):

- The dual function is not everywhere real-valued (unlike the QP case)

$$
\mu \text { needs to satisfy: } \quad \mu_{i} \leq c_{i}, i \in \mathcal{I}
$$

Finding a point in $\left\{(\mu, \omega) \mid \mu_{i} \leq c_{i}, i \in \mathcal{I}, \omega \in \Re\right\} \cap \mathcal{D}$ is costly.

Solution:

- Add a quadratic term $\frac{20}{2}\left\|\theta-\theta^{0}\right\|^{2}$ to (P)
- Moving the center θ^{0} in a certain way to approach an optimal solution of (P) - known as the proximal point algorithm:

Exact form: to solve min $x \in x f^{\prime}(x)$, iterate

Algorithm: Reparametrization + RSD $+\cdots$

Motivation for Applying the Proximal Point Algorithm

Difficulty of applying RSD directly to solve (D):

- The dual function is not everywhere real-valued (unlike the QP case)

$$
\mu \text { needs to satisfy: } \quad \mu_{i} \leq c_{i}, i \in \mathcal{I}
$$

Finding a point in $\left\{(\mu, \omega) \mid \mu_{i} \leq c_{i}, i \in \mathcal{I}, \omega \in \Re\right\} \cap \mathcal{D}$ is costly.

Solution:

- Add a quadratic term $\frac{\gamma_{0}}{2}\left\|\theta-\theta^{0}\right\|^{2}$ to (P)
- Moving the center θ^{0} in a certain way to approach an optimal solution of (P) - known as the proximal point algorithm:

Exact form: to solve $\min _{x \in X} f(x)$, iterate

$$
x^{n+1}=\underset{x \in X}{\arg \min }\left[f(x)+\frac{\gamma_{n}}{2}\left\|x-x^{n}\right\|^{2}\right], \text { with } \gamma_{n} \geq 0, \sup _{n} \gamma_{n}<\infty .
$$

Dual Proximal Point Algorithm

We solve a sequence of regularized primal problems by dual optimization with reparametrization and RSD:

$$
\begin{gathered}
\text { (} \mathrm{P}_{n} \text {) } \min _{\theta, \epsilon}-\sum_{i \in \mathcal{I}} c_{i}^{\prime} \theta_{i}+\eta \sum_{k \in \mathcal{K}} \epsilon_{k}+\frac{\gamma_{n}}{2}\left\|\theta-\theta^{n}\right\|^{2} \\
\text { subj. } \sum_{i \in \mathcal{I}} a_{i, k}(s)^{\prime} \theta_{i}+b_{k}(s) \leq \epsilon_{k}, \forall s \in \mathcal{S}_{k}, k \in \mathcal{K} \\
\mathbf{1}^{\prime} e^{\theta_{i}} \leq 1, \forall i \in \mathcal{I}, \quad \epsilon_{k} \geq 0, \forall k \in \mathcal{K} \\
\text { (D. } \left.\mathrm{D}_{n}\right) \quad \max _{\mu, \omega, \lambda} \omega-\sum_{i \in \mathcal{I}} \lambda_{i}+\sum_{i \in \mathcal{I}} q_{i}^{n}\left(\mu_{i}, \lambda_{i}\right) \\
\text { subj. } \lambda \geq 0,(\mu, \omega) \in \mathcal{D} \\
\text { where } q_{i}^{n}\left(\mu_{i}, \lambda_{i}\right)=\min _{\theta_{i} \in \Re^{\theta_{i}}}\left[\left(\mu_{i}-c_{i}\right)^{\prime} \theta_{i}+\lambda_{i} \mathbf{1}^{\prime} e^{\theta_{i}}+\frac{\gamma_{n}}{2}\left\|\theta_{i}-\theta_{i}^{n}\right\|^{2}\right] .
\end{gathered}
$$

- Can efficiently evaluate q_{i}^{n} (Newton's method, global quadratic

Dual Proximal Point Algorithm

We solve a sequence of regularized primal problems by dual optimization with reparametrization and RSD:

$$
\begin{aligned}
& \text { (} \mathrm{P}_{n} \text {) } \quad \min _{\theta, \epsilon}-\sum_{i \in \mathcal{I}} c_{i}^{\prime} \theta_{i}+\eta \sum_{k \in \mathcal{K}} \epsilon_{k}+\frac{\gamma_{n}}{2}\left\|\theta-\theta^{n}\right\|^{2} \\
& \text { subj. } \sum_{i \in \mathcal{I}} a_{i, k}(s)^{\prime} \theta_{i}+b_{k}(s) \leq \epsilon_{k}, \forall s \in \mathcal{S}_{k}, k \in \mathcal{K} \\
& \mathbf{1}^{\prime} e^{\theta_{i}} \leq 1, \forall i \in \mathcal{I}, \quad \epsilon_{k} \geq 0, \quad \forall k \in \mathcal{K} \\
& \text { (} \left.\mathrm{D}_{n}\right) \max _{\mu, \omega, \lambda} \omega-\sum_{i \in \mathcal{I}} \lambda_{i}+\sum_{i \in \mathcal{I}} q_{i}^{n}\left(\mu_{i}, \lambda_{i}\right) \\
& \text { subj. } \lambda \geq 0, \quad(\mu, \omega) \in \mathcal{D} \\
& \text { where } q_{i}^{n}\left(\mu_{i}, \lambda_{i}\right)=\min _{\theta_{i} \in \Re^{d_{i}}}\left[\left(\mu_{i}-c_{i}\right)^{\prime} \theta_{i}+\lambda_{i} \mathbf{1}^{\prime} e^{\theta_{i}}+\frac{\gamma_{n}}{2}\left\|\theta_{i}-\theta_{i}^{n}\right\|^{2}\right] \text {. }
\end{aligned}
$$

- Can efficiently evaluate q_{i}^{n} (Newton's method, global quadratic convergence) and its 1st and 2nd order derivatives
- \mathcal{D} does not depend on θ^{n}

Algorithm Chart from Dual Viewpoint

Algorithm Variants with Same Idea

Alternative reparametrization for working sets:

- Partition training data $\mathcal{K}=\mathcal{K}_{1} \cup \mathcal{K}_{2} \cup \cdots \cup \mathcal{K}_{m}$
- Introduce $\left(\mu^{j}, \omega^{j}\right), j=1, \ldots, m$ by grouping respective terms in \mathcal{L} :

$$
\sum_{i \in \mathcal{I}}(\sum_{j=1}^{m} \underbrace{\left.\sum_{k \in \mathcal{K}_{j}, s \in \mathcal{S}_{k}} \beta_{k}(s) a_{i, k}(s)^{\prime}\right)}_{\stackrel{\text { def }}{=} \mu^{j}} \theta_{i}+(\sum_{j=1}^{m} \underbrace{\sum_{k \in \mathcal{K}_{j}, s \in \mathcal{S}_{k}} \beta_{k}(s) b_{k}(s)}_{\stackrel{\text { def }}{=} \omega^{j}})
$$

- Dual problem with implicit set constraints $\left(\mu^{j}, \omega^{j}\right) \in \mathcal{D}_{j}, j=1, \ldots, m$ relation with the first reparametrization:

$$
\mu=\sum_{j=1}^{m} \mu^{j}, \quad \omega=\sum_{j=1}^{m} \omega^{j}, \quad \mathcal{D}=\mathcal{D}_{1}+\mathcal{D}_{2}+\cdots+\mathcal{D}_{m}
$$

- Special case/connection with cutting plane-like methods: singleton $\mathcal{K}_{j}, m=|\mathcal{K}|$

Algorithm Variants with Same Idea

Further remarks on reparametrization:

- Arbitrary and varying working sets can also be handled in the first reparametrization (μ, ω) : use the inner approximation view
- For different margin violation penalties: e.g., quadratic or loss-rescaled slacks (Tsochantaridis et al. '05); \mathcal{D} may be unbounded, but the same algorithm can be applied.

Note:

- Reparametrization preserves the inference problem structure
- On use of working sets: proper batch size + coordinate ascent trades off the complexity of direction finding subproblems with that of master problems, and achieves overall efficiency.

Algorithm Behavior and Comparisons of Working Set Sizes

Synthetic HMM data: 10 states, 7 observations 1000 sequences/length 50 $\operatorname{dim}(\theta)=180,|\mathcal{I}|=21$

Batch size $\times m$:
B 100×10
G 500×2
M 1000×1

Outline

Overview and Problem Formulation

Algorithm

Preliminary Experiments

Summary

I: the Synthetic HMM Example

HMM with 10 states and 7 observations:

- Training: 1000 seq. of length $50, c_{i}=$ uniform
- Test: 100 seq. of length 50 , average over 10 runs measure loss on MAP state seq. loss: distance on the ring

Comparison of the dimensionalities of dual variables:

- $|\mathcal{I}|=21, \operatorname{dim}(\theta)=180$, $\operatorname{dim}(\beta)=1000 \times 10^{50}$
- reparametrization w / m working sets:

$$
\operatorname{dim}=m \times 181+21
$$

- "edge-wise"/"marginal polytope" parametrization:

$$
\operatorname{dim}=1000 \times 50 \times(10 \times 10)+21
$$

II: Yeast Dataset - a Case Study on Modeling

UCI Yeast Dataset (discretized)/ multiclass classification

- 9 variables with BN structure (given)

- $|\mathcal{I}|=60$ and $\operatorname{dim}(\theta)=191$
- loss: classification error
- 1484 data points: 1115 (80%) for training and 296 (20\%) for testing

Further selection from training examples

- Select instances $\left(s^{*}, o\right)$ such that
$\max _{s} \ln p\left(s \mid 0 ; \theta_{M L}\right)-\ln p\left(s^{*} \mid 0 ; \theta_{M L}\right) \leq \delta, \quad \delta \geq 0$: selection level
- Reason: avoid difficult instances alternative to further selection: set loss differently for each instance in training

II: Yeast Dataset - a Case Study on Modeling

UCI Yeast Dataset (discretized)/ multiclass classification

- 9 variables with BN structure (given)

- $|\mathcal{I}|=60$ and $\operatorname{dim}(\theta)=191$
- loss: classification error
- 1484 data points: 1115 (80\%) for training and 296 (20\%) for testing

Further selection from training examples

- Select instances $\left(s^{*}, o\right)$ such that

$$
\max _{s} \ln p\left(s \mid o ; \theta_{M L}\right)-\ln p\left(s^{*} \mid o ; \theta_{M L}\right) \leq \delta, \quad \delta \geq 0: \text { selection level }
$$

- Reason: avoid difficult instances alternative to further selection: set loss differently for each instance in training

II: Yeast Dataset - a Case Study on Modeling

B $c_{i}=\mathrm{ML}$ weighted by $\gamma_{i}>0$ $\left\|\theta^{*}-\theta_{M L}\right\|: 0.18 \pm 0.10$

G $c_{i}=$ uniform $\left\|\theta^{*}-\theta_{M L}\right\|: 4.18 \pm 0.03$

II: Yeast Dataset - a Case Study on Modeling

G $c_{i}=$ uniform

$$
\left\|\theta^{*}-\theta_{M L}\right\|: 4.18 \pm 0.03
$$

R $c_{i}=0$, use $\|\theta\|^{2}$ as regularizer $\left\|\theta^{*}-\theta_{M L}\right\|: 4.82 \pm 0.04$

Outline

Overview and Problem Formulation

Algorithm

Preliminary Experiments

Summary

Discussion

Summary of our algorithm for solving large margin training problems:

- Reparametrization + RSD + proximal point algorithm
- Combine dimensionality reduction, differentiable optimization of feasible direction type, and regularization

For discriminative training of generative models, need to study

- Tradeoff between faithfulness to the data and discriminative capacity
- Effect of the relaxed sum-of-probabilities constraint
- Combination with structure learning

