Structured Output Prediction with Structural Support Vector Machines

Thorsten Joachims

Cornell University

Department of Computer Science

Joint work with

T. Hofmann, I. Tsochantaridis, Y. Altun (Brown/Google/TTI)T. Finley, R. Elber, Chun-Nam Yu, Yisong Yue, F. RadlinskiP. Zigoris, D. Fleisher (Cornell)

Supervised Learning

• Assume: Data is i.i.d. from

P(X,Y)

• Given: Training sample

$$S = ((x_1, y_1), ..., (x_n, y_n))$$

• **Goal:** Find function from input space *X* to output space *Y*

$$h: X \longrightarrow Y$$

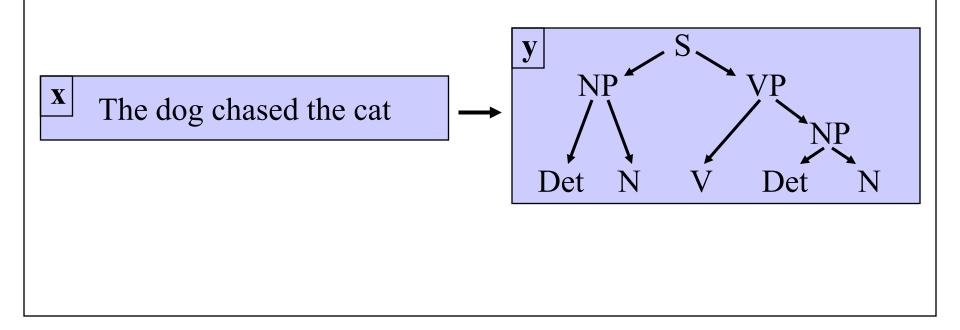
Complex objects

with low risk / prediction error

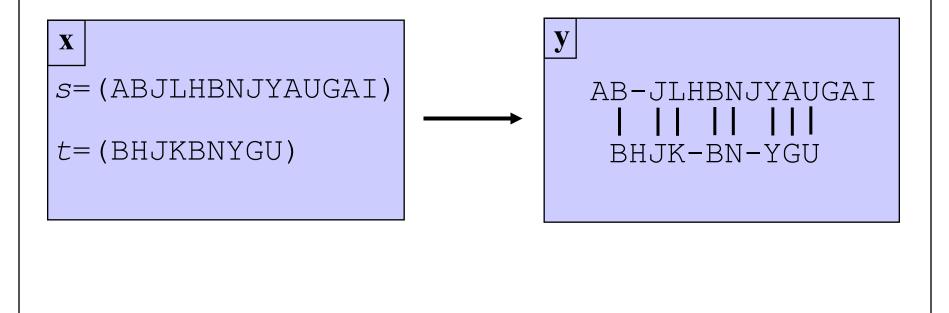
$$R(h) = \int \Delta(h(x), y) dP(X, Y)$$

• Methods: Kernel Methods, SVM, Boosting, etc.

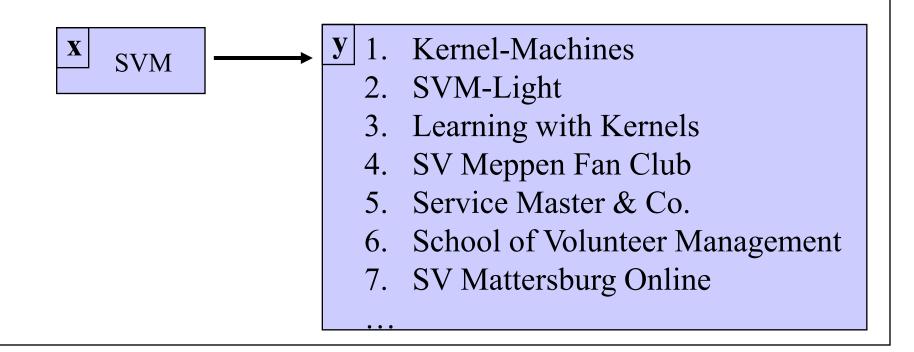
- Natural Language Parsing
 - Given a sequence of words *x*, predict the parse tree *y*.
 - Dependencies from structural constraints, since y has to be a tree.



- Protein Sequence Alignment
 - Given two sequences x=(s,t), predict an alignment y.
 - Structural dependencies, since prediction has to be a valid global/local alignment.

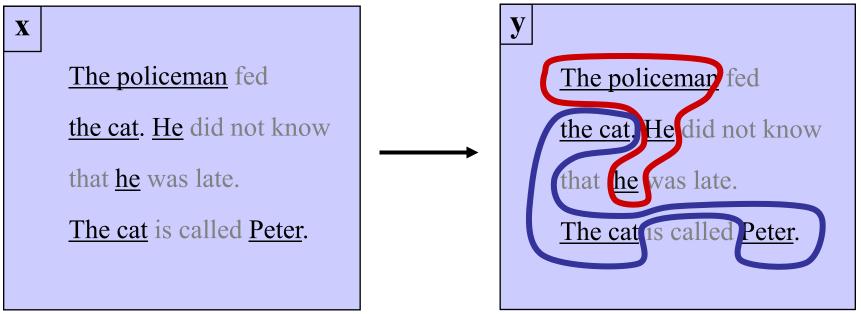


- Information Retrieval
 - Given a query x, predict a ranking y.
 - Dependencies between results (e.g. avoid redundant hits)
 - Loss function over rankings (e.g. AvgPrec)



• Noun-Phrase Co-reference

- Given a set of noun phrases *x*, predict a clustering *y*.
- Structural dependencies, since prediction has to be an equivalence relation.
- Correlation dependencies from interactions.



- and many many more:
 - Sequence labeling (e.g. part-of-speech tagging, namedentity recognition) [Lafferty et al. 01, Altun et al. 03]
 - Collective classification (e.g. hyperlinked documents)
 [Taskar et al. 03]
 - Multi-label classification (e.g. text classification) [Finley & Joachims 08]
 - Binary classification with non-linear performance measures (e.g. optimizing F1-score, avg. precision) [Joachims 05]
 - Inverse reinforcement learning / planning (i.e. learn reward function to predict action sequences) [Abbeel & Ng 04]

Overview

- Task: Discriminative learning with complex outputs
- Related Work
 - SVM algorithm for complex outputs
 - Predict trees, sequences, equivalence relations, alignments
 - General non-linear loss functions
 - Generic formulation as convex quadratic program
 - Training algorithms
 - n-slack vs. 1-slack formulation
 - Correctness and sparsity bound
 - Applications
 - Sequence alignment for protein structure prediction [w/ Chun-Nam Yu]
 - Diversification of retrieval results in search engines [w/ Yisong Yue]
 - Supervised clustering [w/ Thomas Finley]
 - Conclusions

Why Discriminative Learning for Structured Outputs?

•	Im –	Precision/Recall Break-Even Point	Naïve Bayes	Linear SVM	it! er 06]
	_	Reuters	72.1	87.5	
•	Dir	WebKB	82.0	90.3	
	_	Ohsumed	62.4	71.6	ification

- Improve upon prediction accuracy of existing generative methods!
 - Natural language parsing: generative models like probabilistic contextfree grammars
 - SVM outperforms naïve Bayes for text classification [Joachims, 1998]
 [Dumais et al., 1998]
- More flexible models!
 - Avoid generative (independence) assumptions
 - Kernels for structured input spaces and non-linear functions

Related Work

• Generative training (i.e. model P(Y,X))

- Hidden-Markov models
- Probabilistic context-free grammars
- Markov random fields
- etc.

• Discriminative training (i.e. model P(Y|X) or minimize risk)

- Multivariate output regression [Izeman, 1975] [Breiman & Friedman, 1997]
- Kernel Dependency Estimation [Weston et al. 2003]
- Transformer networks [LeCun et al, 1998]
- Conditional HMM [Krogh, 1994]
- Conditional random fields [Lafferty et al., 2001]
- Perceptron training of HMM [Collins, 2002]
- Maximum-margin Markov networks [Taskar et al., 2003]
- Structural SVMs [Altun et al. 03] [Joachims 03] [TsoHoJoAl04]

Overview

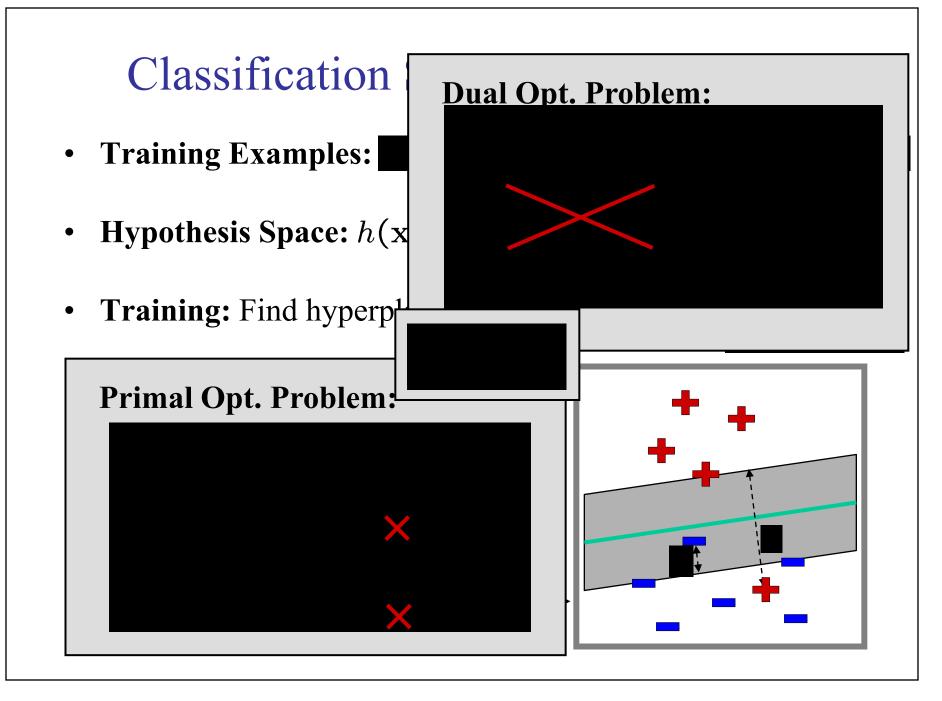
- Task: Discriminative learning with complex outputs
- Related Work
- SVM algorithm for complex outputs
 - Predict trees, sequences, equivalence relations, alignments
 - General non-linear loss functions
 - Generic formulation as convex quadratic program

Training algorithms

- n-slack vs. 1-slack formulation
- Correctness and sparsity bound

• Applications

- Sequence alignment for protein structure prediction [w/ Chun-Nam Yu]
- Diversification of retrieval results in search engines [w/ Yisong Yue]
- Supervised clustering [w/ Thomas Finley]
- Conclusions



Challenges in Discriminative Learning with Complex Outputs

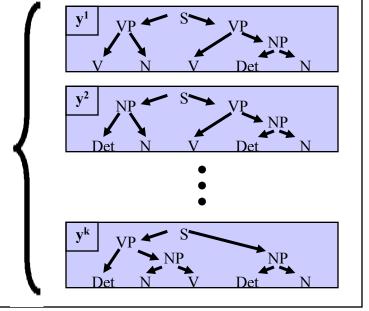
- Approach: view as multi-class classification task
 - Every complex output $y^i \in Y$ is one class
- Problems:

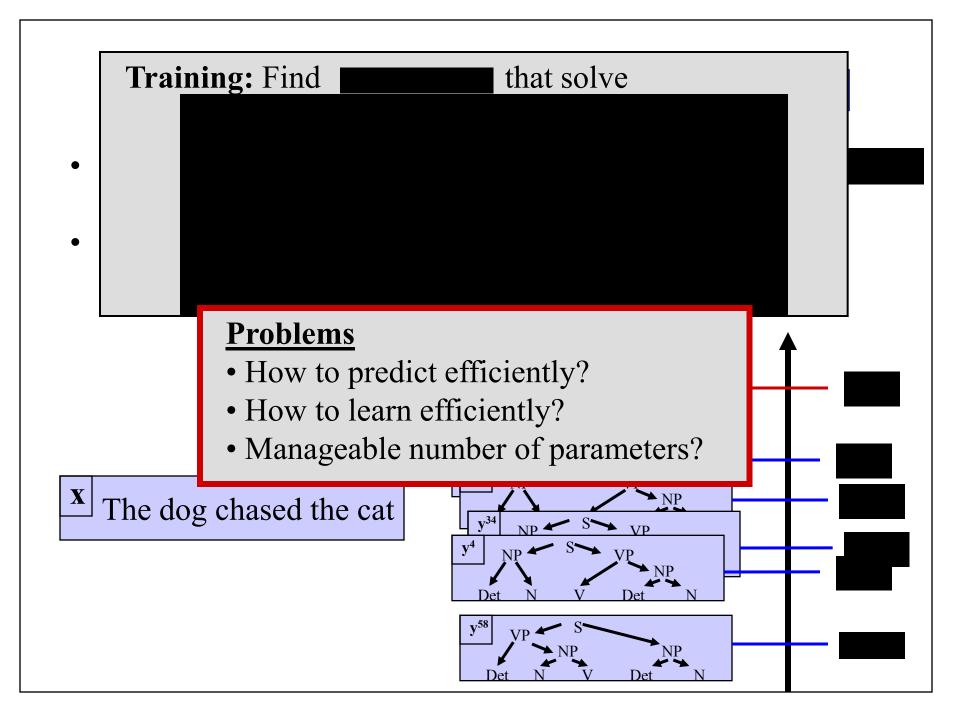
X

- Exponentially many classes!
 - How to predict efficiently?
 - How to learn efficiently?
- Potentially huge model!

The dog chased the cat

• Manageable number of features?





Joint Feature Map

- Feature vector Φ(x, y) that describes match between x and y
- Learn single weight vector and rank by $\vec{w}^T \Phi(x, y)$

$$h(\vec{x}) = argmax_{y \in Y} \left[\vec{w}^T \Phi(x, y) \right]$$

Problems

- How to predict efficiently?
- How to learn efficiently?

y³⁴

y⁴

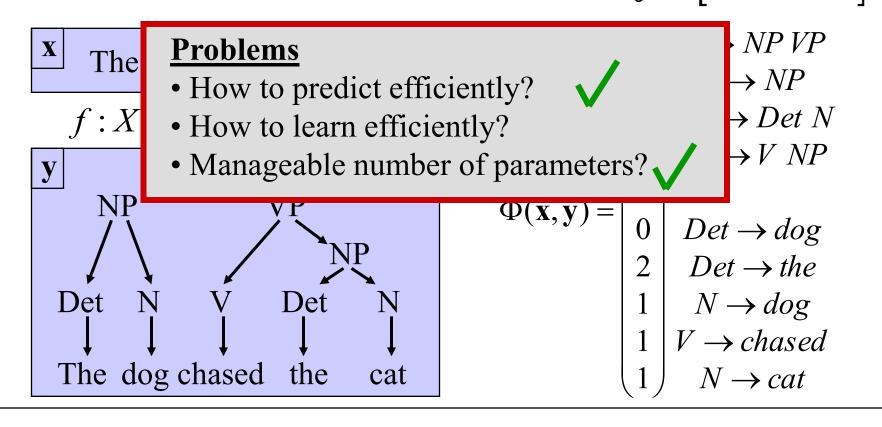
• Manageable number of parameters?

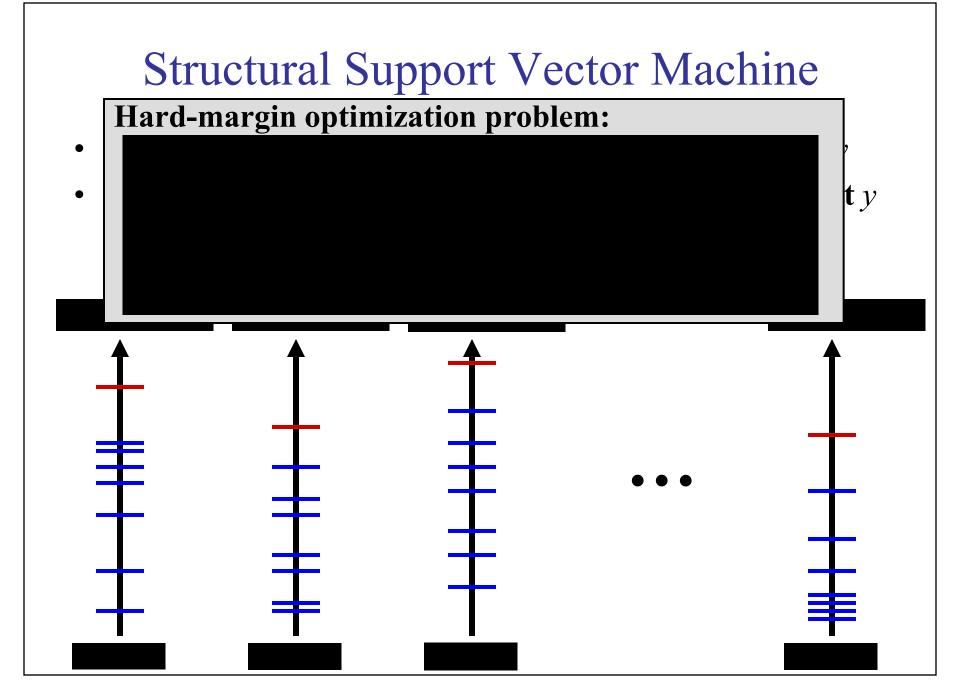
 \mathbf{X} The dog chased the cat

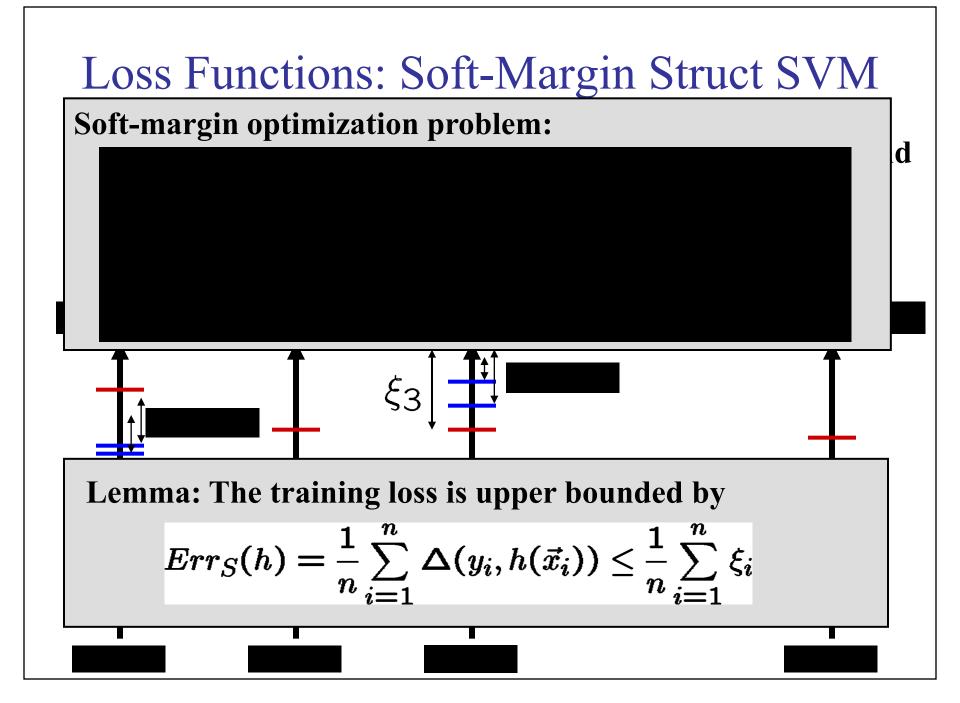
Joint Feature Map for Trees

- Weighted Context Free Grammar
 - Each rule r_i (e.g. $S \rightarrow NPVP$) has a weight w_i
 - Score of a tree is the sum of its weights
 - Find highest scoring tree $h(\vec{x}) = argmax_{y \in Y} \left[\vec{w}^T \Phi(x, y) \right]$

CKY Parser







Experiment: Natural Language Parsing

• Implemention

- Incorporated modified version of Mark Johnson's CKY parser
- Learned weighted CFG with |
- Data
 - Penn Treebank sentences of length at most 10 (start with POS)
 - Train on Sections 2-22: 4098 sentences
 - Test on Section 23: 163 sentences

	Test Accuracy	
Method	Acc	$ F_1 $
PCFG with MLE	55.2	86.0
SVM with $(1-F_1)$ -Loss	58.9	88.5

[TsoJoHoAl04]

more complex features [TaKlCoKoMa04]

Generic Structural SVM

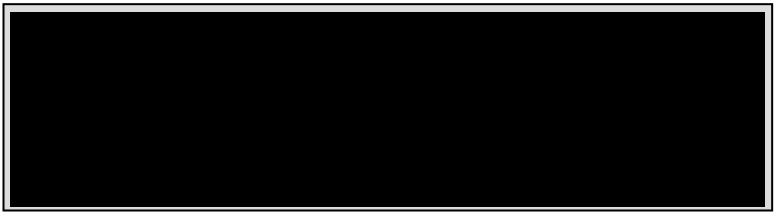
- Application Specific Design of Model
 - Loss function
 - Representation $\Phi(x, y)$

→ Markov Random Fields [Lafferty et al. 01, Taskar et al. 04]

• **Prediction:**

$$\hat{y} = argmax_{y \in Y} \{ \vec{w}^T \Phi(x, y) \}$$

• Training:

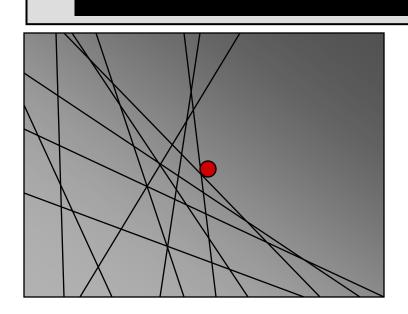


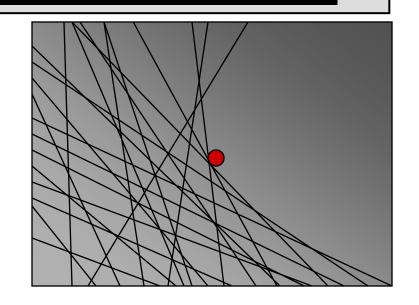
• Applications: Parsing, Sequence Alignment, Clustering, etc.

Reformulation of the Structural SVM QP

n-Slack Formulation:

[TsoJoHoAl04]





Reformulation of the Structural SVM QP

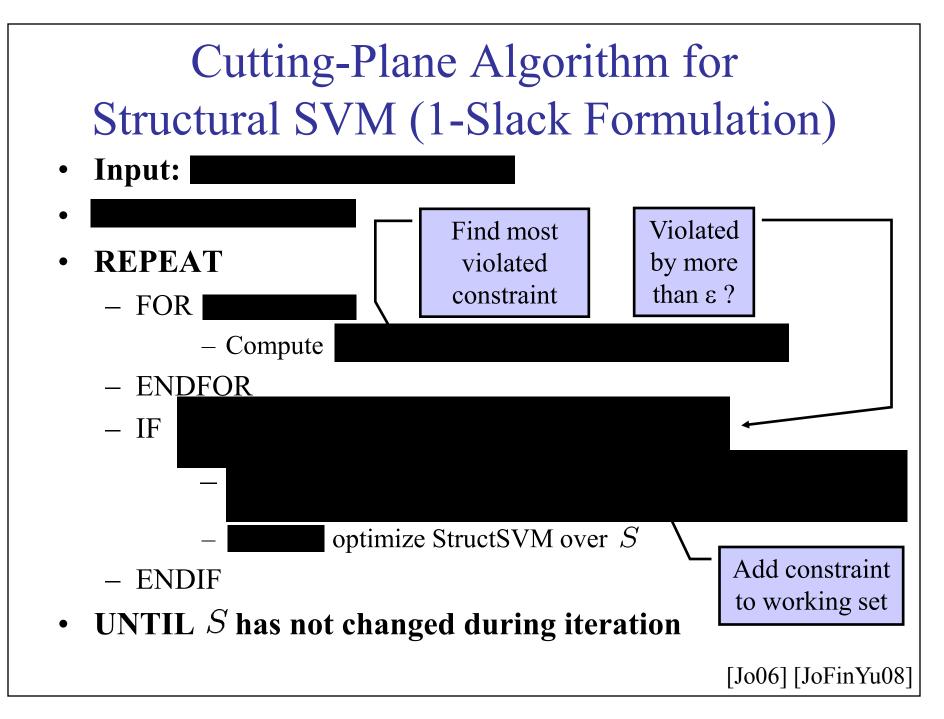
n-Slack Formulation:

[TsoJoHoAl04]

 \Leftrightarrow

1-Slack Formulation:

[JoFinYu08]



Polynomial Sparsity Bound

• **Theorem:** The cutting-plane algorithm finds a solution to the Structural SVM soft-margin optimization problem in the 1-slack formulation after adding at most

$$\left\lceil \log_2\left(\frac{\Delta}{4R^2C}\right) \right\rceil + \left\lceil \frac{16R^2C}{\varepsilon} \right\rceil$$

constraints to the working set S, so that the primal constraints are feasible up to a precision ϵ and the objective on S is optimal. The loss has to be bounded **constraints**, and **constraints**.

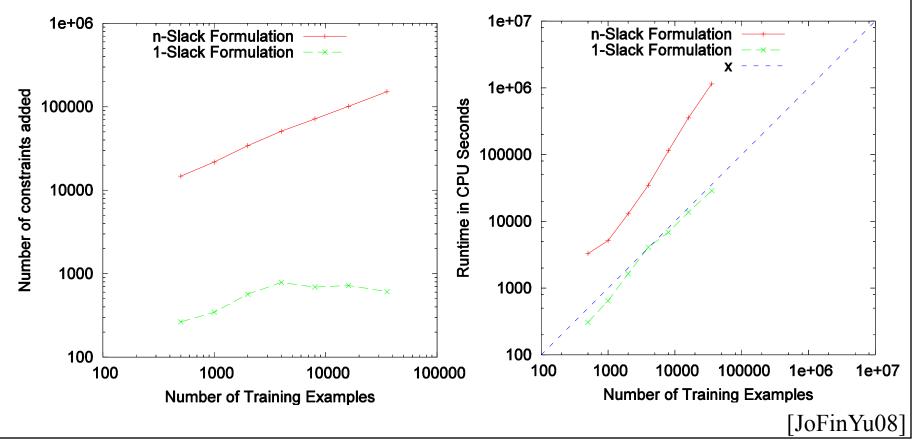
[Jo03] [Jo06] [TeoLeSmVi07] [JoFinYu08]

Empirical Comparison: Different Formulations

Experiment Setup:

- Part-of-speech tagging on Penn Treebank corpus

- ~36,000 examples, ~250,000 features in linear HMM model



Applying StructSVM to New Problem

• General

- SVM-struct algorithm and implementation

http://svmlight.joachims.org

- Theory (e.g. training-time linear in n)
- Application specific
 - Loss function
 - Representation $\Phi(x, y)$
 - Algorithms to compute $\hat{y} = argmax_{y \in Y} \{ \vec{w}^T \Phi(x_i, y) \}$ $\hat{y} = argmax_{y \in Y} \{ \Delta(y_i, y) + \vec{w}^T \Phi(x_i, y) \}$
- Properties
 - General framework for discriminative learning
 - Direct modeling, not reduction to classification/regression
 - "Plug-and-play"

Overview

- Task: Discriminative learning with complex outputs
- Related Work
- SVM algorithm for complex outputs
 - Predict trees, sequences, equivalence relations, alignments
 - General non-linear loss functions
 - Generic formulation as convex quadratic program
- Training algorithms
 - n-slack vs. 1-slack formulation
 - Correctness and sparsity bound
- Applications
 - Sequence alignment for protein structure prediction [w/ Chun-Nam Yu]
 - Diversification of retrieval results in search engines [w/ Yisong Yue]
 - Supervised clustering [w/ Thomas Finley]
- Conclusions

Comparative Modeling of Protein Structure

• Goal: Predict structure from sequence

 $h(\text{``APPGEAYLQV''}) \rightarrow$

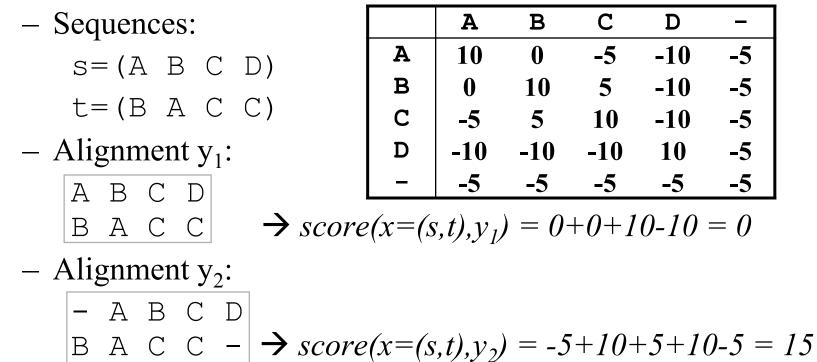
- Hypothesis:
 - Amino Acid sequences for into structure with lowest energy
 - Problem: Huge search space (> 2^{100} states)
- Approach: Comparative Modeling
 - Similar protein sequences fold into similar shapes
 - \rightarrow use known shapes as templates
 - Task 1: Find a similar known protein for a new protein
 h("APPGEAYLQV", → yes/no
 - Task 2: Map new protein into known structure h("APPGEAYLQV", \longrightarrow [A \rightarrow 3,P \rightarrow 4,P \rightarrow 7,...]
 - Task 3: Refine structure

[Jo03, JoElGa05, YuJoEl06]

Linear Score Sequence Alignment

Method: Find alignment y that maximizes linear score $y = argmax_{y \in Y} \{score(x=(s,t), y)\}$

Example:

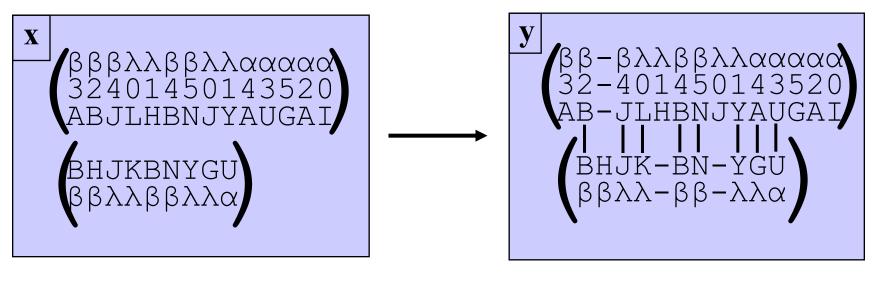


Algorithm: Solve argmax via dynamic programming.

Predicting an Alignment

Protein Sequence to Structure Alignment (Threading)

- Given a pair x=(s,t) of new sequence s and known structure t, predict the alignment y.
- Elements of *s* and *t* are described by features, not just character identity.



YuJoEl0

Scoring Function for Vector Sequences

General form of linear scoring function:

score (**x**=(**s**, **t**), **y**) =
$$\sum_{i} score(y_{i}^{s}, y_{i}^{t})$$

= $\sum_{i} \mathbf{w}^{T} \phi(\mathbf{s}, \mathbf{t}, y_{i})$
= $\mathbf{w}^{T} \sum_{i} \phi(\mathbf{s}, \mathbf{t}, y_{i})$
= $\mathbf{w}^{T} \Phi(\mathbf{x}, \mathbf{y})$

- \rightarrow match/gap score can be arbitrary linear function
- → argmax can still be computed efficiently via dynamic programming

Estimation:

- Generative estimation (e.g. log-odds, hidden Markov model)
- Discriminative estimation via structural SVM

[YuJoEl07]

Loss Function and Separation Oracle

- Loss function: $\Delta(y_i, y)$
 - Q loss: fraction of incorrect alignments

• Correct alignment
$$\mathbf{y} = \begin{bmatrix} - & A & B & C & D \\ B & A & C & C & - \end{bmatrix}$$

• Alternate alignment $\mathbf{y}' = \begin{bmatrix} A & - & B & C & D \\ B & A & C & C & - \end{bmatrix}$
• Alternate alignment $\mathbf{y}' = \begin{bmatrix} A & - & B & C & D \\ B & A & C & C & - \end{bmatrix}$

- Q4 loss: fraction of incorrect alignments outside window

- Correct alignment $\mathbf{y} = \begin{bmatrix} & A & B & C & D \\ B & A & C & C & \end{bmatrix}$ • Alternate alignment $\mathbf{y}' = \begin{bmatrix} A & - & B & C & D \\ B & A & C & C & - \end{bmatrix}$ • Alternate alignment $\mathbf{y}' = \begin{bmatrix} A & - & B & C & D \\ B & A & C & C & - \end{bmatrix}$
- Separation oracle: $\hat{y} = argmax_{y \in Y} \{ \Delta(y_i, y) + \vec{w}^T \Phi(x_i, y) \}$

- Same dynamic programming algorithms as alignment

[YuJoEl07]

Experiment

- Train set [Qiu & Elber]:
 - 5119 structural alignments for training, 5169 structural alignments for validation of regularization parameter C
- Test set:
 - 29764 structural alignments from new deposits to PDB from June 2005 to June 2006.
 - All structural alignments produced by the program CE by superimposing the 3D coordinates of the proteins structures. All alignments have CE Z-score greater than 4.5.
- Features (known for structure, SABLE predictions for sequence):
 - Amino acid identity (A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y)
 - Secondary structure (α,β,λ)
 - Exposed surface area (0,1,2,3,4,5)

[YuJoEl07]

Experiment Results

Models:

Q-Score

Simple

Anova2

Tensor

Window

• Simple: $\Phi(s,t,y_i) \Leftrightarrow (A|A; A|C; ...; -|Y; \alpha|\alpha; \alpha|\beta...; 0|0; 0|1;...)$

Test

39.89

44.98

42.81

46.30

- Anova2: $\Phi(s,t,y_i) \Leftrightarrow (A\alpha | A\alpha ...; \alpha 0 | \alpha 0 ...; A0 | A0;...)$
- **Tensor:** $\Phi(s,t,y_i) \Leftrightarrow (A\alpha 0 | A\alpha 0; A\alpha 0 | A\alpha 1; ...)$

Ability to train complex models?

Features

1020

49634

203280

447016

comparison against other methods.				
Q4-score	Test			
BLAST	28.44			
SVM (Window)	70.71			
SSALN [QiuElber]	67.30			
TM-align [ZhaSko]	(85.32)			
O_{1}				

Q-score when optimizing to Q-loss

Q4-score when optimizing to Q4-loss

[YuJoEl07]

Comparison against other methods?

Overview

- Task: Discriminative learning with complex outputs
- Related Work
- SVM algorithm for complex outputs
 - Predict trees, sequences, equivalence relations, alignments
 - General non-linear loss functions
 - Generic formulation as convex quadratic program
- Training algorithms
 - n-slack vs. 1-slack formulation
 - Correctness and sparsity bound
- Applications
 - Sequence alignment for protein structure prediction [w/ Chun-Nam Yu]
 - Diversification of retrieval results in search engines [w/ Yisong Yue]
 - Supervised clustering [w/ Thomas Finley]
- Conclusions

Diversified Retrieval

• Ambiguous queries:

- Example query: "SVM"
 - ML method
 - Service Master Company
 - Magazine
 - School of veterinary medicine
 - Sport Verein Meppen e.V.
 - SVM software
 - SVM books
- "submodular" performance measure
 - → make sure each user gets at least one relevant result
- Learning Queries:
 - Find all information about a topic
 - Eliminate redundant information

Query: SVM

- 1. Kernel Machines
- 2. SVM book
- 3. SVM-liaht

5.

6.

7.

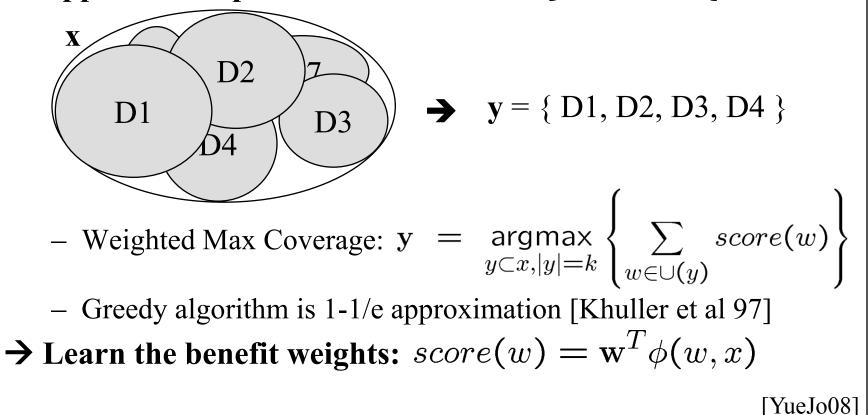
- 4. Query: SVM
 - 1. Kernel Machines
 - 2. Service Master Co
 - 3. SV Meppen
 - 4. UArizona Vet. Med.
 - 5. SVM-light
 - 6. Intro to SVM

7. .

[YueJo08]

Approach

- Prediction Problem:
 - Given set \mathbf{x} , predict size k subset \mathbf{y} that satisfies most users.
- Approach: Topic Red. ¼ Word Red. [SwMaKi08]



Features Describing Word Importance

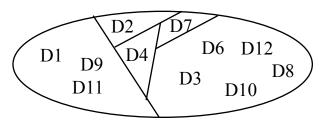
- How important is it to cover word w
 - w occurs in at least X% of the documents in x
 - w occurs in at least X% of the titles of the documents in x
 - w is among the top 3 TFIDF words of X% of the documents in \boldsymbol{x}
 - w is a verb

 \rightarrow Each defines a feature in $\phi(w, x)$

- How well a document d covers word w
 - w occurs in d
 - w occurs at least k times in d
 - w occurs in the title of d
 - w is among the top k TFIDF words in d
 - \rightarrow Each defines a separate vocabulary and scoring function

Loss Function and Separation Oracle

- Loss function: $\Delta(y_i, y)$
 - Popularity-weighted percentage of subtopics not covered in y
 →More costly to miss popular topics
 - Example:



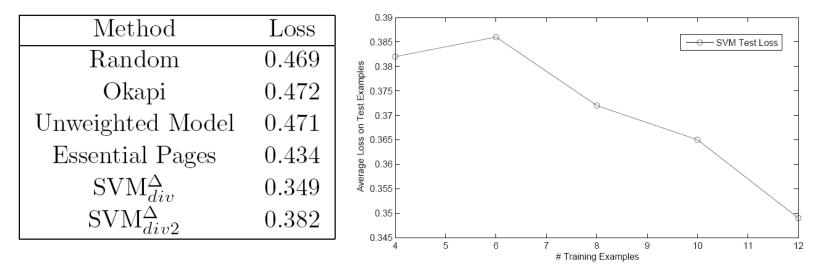
- Separation oracle: $\hat{y} = argmax_{y \in Y} \{ \Delta(y_i, y) + \vec{w}^T \Phi(x_i, y) \}$
 - Again a weighted max coverage problem
 - \rightarrow add artificial word for each subtopic with percentage weight
 - Greedy algorithm is 1-1/e approximation [Khuller et al 97]

[YueJo08]

Experiments

- Data:
 - TREC 6-8 Interactive Track
 - Relevant documents manually labeled by subtopic
 - 17 queries (~700 documents), 12/4/1 training/validation/test
 - Subset size k=5, two feature sets (div, div2)

• Results:

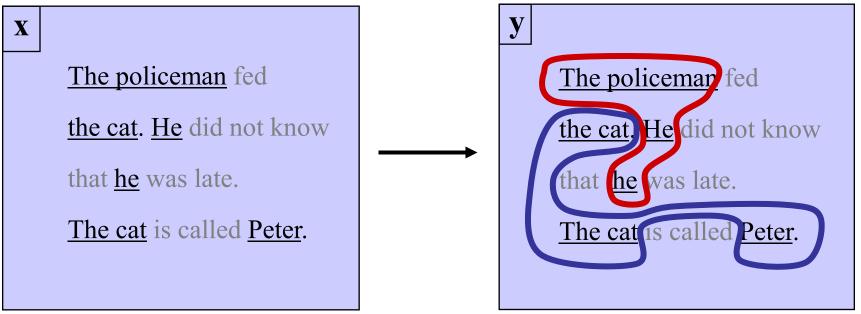


Overview

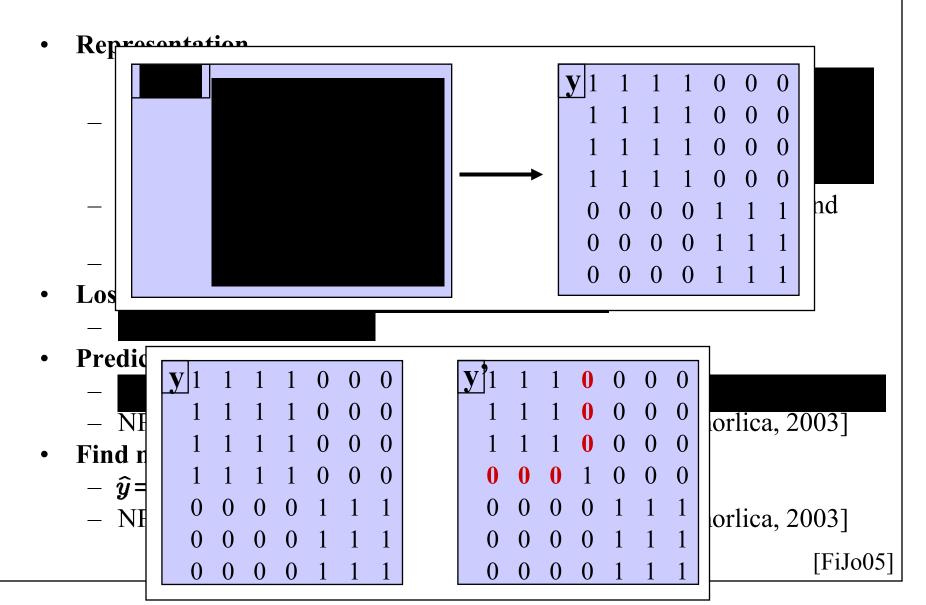
- Task: Discriminative learning with complex outputs
- Related Work
- SVM algorithm for complex outputs
 - Predict trees, sequences, equivalence relations, alignments
 - General non-linear loss functions
 - Generic formulation as convex quadratic program
- Training algorithms
 - n-slack vs. 1-slack formulation
 - Correctness and sparsity bound
- Applications
 - Sequence alignment for protein structure prediction [w/ Chun-Nam Yu]
 - Diversification of retrieval results in search engines [w/ Yisong Yue]
 - Supervised clustering [w/ Thomas Finley]
- Conclusions

Learning to Cluster

- Noun-Phrase Co-reference
 - Given a set of noun phrases *x*, predict a clustering *y*.
 - Structural dependencies, since prediction has to be an equivalence relation.
 - Correlation dependencies from interactions.



Struct SVM for Supervised Clustering



Summary and Conclusions

- Learning to predict complex output
 - Directly model machine learning application end-to-end
- An SVM method for learning with complex outputs
 - General method, algorithm, and theory
 - Plug in representation, loss function, and separation oracle
 - More details and further work:
 - Diversified retrieval [Yisong Yue, ICML08]
 - Sequence alignment [Chun-Nam Yu, RECOMB07, JCB08]
 - Supervised k-means clustering [Thomas Finley, forthcoming]
 - Approximate inference and separation oracle [Thomas Finley, ICML08]
 - Efficient kernelized structural SVMs [Chun-Nam Yu, KDD08]

• Software: SVM^{struct}

- General API
- Instances for sequence labeling, binary classification with non-linear loss, context-free grammars, diversified retrieval, sequence alignment, ranking
- http://svmlight.joachims.org/