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Hypothesis Driven

• Needs hypothesis

• Needs appropriate data
(interactions+properties)

• Statistical Significance:
p-value

• Small effects seen in lots of
data

Data Driven

• No Hypothesis needed

• No full data needed (only
interactions)

• Post-hoc explanation

• Statistical Significance?!

• Effect size?!

(picture by Mark Newman)
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Market Research as an Example

• N = 892, 641 eBay users

• M = 7, 4 Mio links (pairwise
competitions for single articles)

• Infer possible hidden classes of
agents (interest groups)

• Reorder rows and columns
according to classes



Interpretation of Bidder Groups

Risk ratio of bidding in category
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A well defined Problem: Planted Partitions
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B

p(B|B)
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• Ensemble of (infinitely) large Network with given p(k) and∑∞
k kp(k) = 〈k〉 finite

• Nodes carry hidden cluster index si ∈ {1, 2} (type A,B).
• Wiring is random except for within/between group wiring
• One parameter: a fraction of pin links lies within clusters, the rest

between clusters (equal sized for simplicity).
• Can we infer the colors given links, sizes and number of

clusters, only?



Impossible-to-Trivial-Transition

impossible for pin = 0.5

trivial for pin = 1.0

pin = 0.58

pin = 0.66

pin = 0.75

pin = 0.83

pin = 0.92



A Worst Case Scenario: 3 Links per Node
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Why this transition?

• Given only the network Aij , size and number of clusters

• Only sensible approach: Look for maximally separated clusters!

• Find a minimum cut, i.e. find the ground state (global minimum) of:

Cutsize E =
∑
i<j

Aij(1− δ(σi , σj))

under constraint 1
N

∑
i δ(σi , r) = 1/2 for all r ∈ {1, 2}

• Effectively: among all N!/(N/2)!/(N/2)! partitions into two equal
sized clusters (“configurations”), find the one with minimum
number of edges between clusters (Bayes MAP optimal)

• Note: Cutsize of planted cluster structure: Ep = N 〈k〉
2 (1− pin)



Algorithm Independent Results

• Problem: Designed configuration is a guaranteed local minimum of
the cutsize only (!) for pin = 1.

• Study the overlap of the expected configuration which
minimizes E with planted clusters as function of pin.

• Makes analysis independent of inference algorithm used and results
universal.

• Statistical Physics allows to calculate p(σi |si ) as a function of pin

• Find the expected accuracy of recovering the hidden variables via

Accuracy =
1

N

N∑
i=1

δ(σi , si ) =
∑

s

p(σ = s|s)

where the σi minimize the cutsize E and si are the hidden variables.



Influence of Graph Topology on Min-Cut Partition

0.5 0.6 0.7 0.8 0.9 1pin

0.5

0.6

0.7

0.8

0.9

1

A
ch

ie
va

bl
e 

A
cc

ur
ac

y

0 0.05 0.1
ERnd-E

0.5

0.6

0.7

0.8

0.9

1

0.8 0.85 0.9 0.95 1
p

in

-1.5

-1.4

-1.3

-1.2

E
ne

rg
y

E
E

p

J.R.,M. Leone, Phys. Rev. Lett, 101, 078701 (2008)

C
u
t
s
i
z
e

Configurations

Expectation
Value

Designed Configuration

Global Minimum

• Can find small cutsizes even in
random networks

• Alternative minima compete with
designed minima
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Designed Configuration

Global Minimum

• At pin ≥ pc
in we find a configuration

that has a lower energy than
expected in a random network.

• This global minimum moves closer
to the designed configuration
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• At pin = 2ERnd/〈k〉 the designed
minimum is lower than the
expectation value in a random
network

• Less local minima
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• Global minimum approaches
designed configuration with
increasing pin

• Less local minima, landscape
smoothes



Influence of Graph Topology on Min-Cut Partition

0.5 0.6 0.7 0.8 0.9 1pin

0.5

0.6

0.7

0.8

0.9

1

A
ch

ie
va

bl
e 

A
cc

ur
ac

y

0 0.05 0.1
ERnd-E

0.5

0.6

0.7

0.8

0.9

1

0.8 0.85 0.9 0.95 1
p

in

-1.5

-1.4

-1.3

-1.2

E
ne

rg
y

E
E

p

J.R.,M. Leone, Phys. Rev. Lett, 101, 078701 (2008)

C
u
t
s
i
z
e

Configurations

Expectation
Value

Designed Configuration

Global Minimum

• Global minimum approaches
designed configuration with
increasing pin

• Less local minima, landscape
smoothes



Influence of Graph Topology on Min-Cut Partition

0.5 0.6 0.7 0.8 0.9 1pin

0.5

0.6

0.7

0.8

0.9

1

A
ch

ie
va

bl
e 

A
cc

ur
ac

y

0 0.05 0.1
ERnd-E

0.5

0.6

0.7

0.8

0.9

1

0.8 0.85 0.9 0.95 1
p

in

-1.5

-1.4

-1.3

-1.2

E
ne

rg
y

E
E

p

J.R.,M. Leone, Phys. Rev. Lett, 101, 078701 (2008)

C
u
t
s
i
z
e

Configurations

Expectation
Value

Designed Configuration

Global Minimum

• At pin = 1 designed minimum and
global minimum coincide

• Only one minimum left



How does pc
in depend on Degree Distribution?
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• ER: Poissonian, SF kmin: p(k) ∝ k−3 for k ≥ kmin,
SF ∆k: p(k) ∝ (k + ∆k)−3

• Näıve guess for critical pin would be pn
in = 2ERnd/〈k〉 and is too

conservative.

• Recognizable structure starts at “weaker” cluster structures.



Inclusion of Prior Knowledge

Again, only 3 links per node, finite fraction of hidden labels known:
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• Partially labeld data may increase accuracy dramatically
• Especially around the transition point.



Finite Size Effects
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Unequal Cluster Sizes

Bethe lattice with 3 links per node, 2/3 type A, 1/3 type B
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• Behavior is qualitatively the same as for equal sized clusters
• Transition point changes slightly (pc

in moves left)



Conclusion
• Sharp transition from impossible to easy cluster detection

• Similar transitions for multivariate data:
• Given N = αD data points in a space of dimension D, can we infer

clusters (Gaussian Mixtures, etc)?
• Answer: Yes we can, if only α > αc ! (Given enough data, we can

learn any distribution)

• This is wrong for sparse graphs (those with finite connectivity)!
• ”Dimensionality and size of data set are not independent”.
• There may exist structure that is principally undetectable by

unsupervised methods even in infinitely large networks.
• Spurious solutions in large “hypothesis space” obscure true

structure.
• Inclusion of prior knowledge (labeled nodes) may help somewhat.
• Analytical formulae for transition point and achievable accuracy.

Data driven research will (only) tell you about (all) strong effects!
Small effects are visible only to hypothesis driven research!
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Solution via Cavity-Equations

P(h|s) =
∞∑

k=0

p(k)

∫ k∏
i=1

(dquiQin(ui |s)) δ

(
h−

k∑
i=1

ui

)

Q(u|s) =
∞∑

d=0

q(d)

∫ d∏
i=1

(dquiQin(ui |s)) δ

(
u− û

(
d∑

i=1

ui

))

Qin(u|s) = pinQ(u|s) +

q∑
r 6=s

1 − pin

q − 1
Q(u|r).

Q(u|s) = ηcw , where c = us and w = ||u||2 − c

Symmetry considerations enforce equi-partition and reduce the number of
independent parameters from q(2q − 1) to only 2q − 1!



Iterated Solution of Cavity-Equations for 2 Clusters

η11 =
∞∑

n0=0

∞∑
n=0

q(n0 + 2n)
(n0 + 2n)!

n0!n!n!

(
ηin
10

)n (
ηin
01

)n
ηn0
11

η10 =
∞∑

n0=0

∞∑
n1>n2

q(n0 + n1 + n2)
(n0 + n1 + n2)!

n0!n1!n2!

(
ηin
10

)n1
(
ηin
01

)n2
ηn0
11

η01 = 1 − η11 − η10


