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Happiness:

http://wikipedia.org

I Greek philosophers held
Eudaimonia as highest good. [9]

I ' flourishing, well-being,
pleasure, ...

I Socrates, Plato,
Aristotle, Epicurus, ...

http://wikipedia.org
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Happiness:

http://wikipedia.org

Bentham’s hedonistic calculus:

“[t]he greatest happiness of the greatest
number is the foundation of morals and
legislation” [17]

Priestly, John Stuart Mill, ...

http://wikipedia.org
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United States’ Declaration of Independence:

http://wikipedia.org

“We hold these truths to be sacred &
undeniable; that all men are created
equal & independent, that from that
equal creation they derive rights
inherent & inalienable, among which are
the preservation of life, & liberty, & the
pursuit of happiness;”

http://wikipedia.org
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Happiness:

Even the odd modern economist
likes happiness:

“Happiness” by Richard Layard [11]
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What makes us happy?

Layard’s summary:

Dominant factors:
I Family

relationships
I Financial situation
I Work
I Community and

Friends

I Health
I Personal Values
I Personal Freedom

Unimportant factors:
I Age
I Gender
I Education

I Inherent
intelligence

I Looks
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Desiring happiness—not just for boffins:

I Average people routinely report being happy is what
they want most in life [11, 12]

National indices of well-being:

I Bhutan
I France
I Australia
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Emotional content

So how does one measure

1. happiness?
2. levels of other emotions?

Just ask people how happy they are.

I Experience sampling [4, 6, 5] (Csikszentmihalyi et al.)
I Day reconstruction [10] (Kahneman et al.)

But self-reporting has drawbacks...

I relies on memory and self-perception
I induces misreporting [13]

I costly
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Measuring Emotional Content

We’d like to build an hedonometer:
I An instrument to ‘remotely-sense’ emotional states

and levels, in real time or post hoc.

Ideally:
I Transparent
I Fast
I Based on written

expression
I Uses human evaluation

I Non-reactive
I Complementary to

self-reported measures
I Improvable

Some possibilities:

I Natural language processing (e.g., OpinionFinder)
I Declared mood levels in blogs (e.g., Livejournal) [14]
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Measuring Emotional Content

I Idea: Gauge emotional content of an entity through
human assessment via semantic differentials.

I Examples:
I hate ↔ love
I rough ↔ smooth
I up ↔ down

I Osgood et al. (1957) [15] identified
a basis of 3 semantic differentials:

I Valence: bad ↔ good
I Dominance: weak ↔ strong
I Arousal: passive ↔ active

(also often: Evaluation, Potency, and Activity)
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ANEW study

I ANEW = “Affective Norms for English Words”

I Study: participants shown lists of isolated words
I Asked to grade each word’s valence, arousal, and

dominance level
I Integer scale of 1–9

I N =1034 words—previously identified as bearing
emotional weight

I Participants = College students (*cough*)
I Results published by Bradley and Lang (1999) [2]
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ANEW study—three 1–9 scales:

valence:
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ANEW study—three 1–9 scales:

valence:

arousal:

dominance:
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ANEW words—examples
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funeral/rape/suicide

trauma/hostage/disgusted

fault/corrupt/lawsuit

derelict/neurotic/vanity

engine/paper/street

optimism/pancakes/church

glory/luxury/trophy

love/paradise/triumphant
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Analysing text:

I Simplest measure for a text:

θavg =
N∑

i=1

piθi

where pi is fractional abundance of word i and θ is
average valence, arousal, or dominance for word i .

I Focus on valence, θ = v .
I Average valence typically falls between 5 and 7.
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Unhappiness:

Some obvious problems/issues:

I Partial coverage of all words.
I Context is ignored.

I You just don’t like it.

Really.

Clearly:

I Only suitable for large-scale texts.
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Data sets:

Texts:

1. Song lyrics (1960–2007)
2. Song titles (1960–2008)
3. State of the Union (SOTU) Addresses (1790–2008)

Sources:
I hotlyrics.com (�)
I freedb.com (�)
I American Presidency Project:

www.presidency.ucsb.edu (�).

file:hotlyrics.com
file:freedb.com
http://www.presidency.ucsb.edu/
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Data sets:

4 Blog phrases beginning with “I feel...” or “I am
feeling” taken from wefeelfine.org (�) (2005–2008)

Created by Jonathan Harris and Sep Kamvar

http://www.wefeelfine.org
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wefeelfine.org:
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wefeelfine.org:
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Some demographics for blog sentences:

Breakdown by # of sentences:

Country Percentage
United States 82.3
Canada 6.1
United Kingdom 4.8
Australia 3.7
Philippines 0.4
Germany 0.2
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Some numbers:

Counts Song lyrics Song titles
All words 58,610,849 60,867,223

ANEW words 3,477,575 (5.9%) 5,612,708 (9.2%)
Individuals ∼ 20,000 ∼ 632,000

Counts Weblogs SOTU
All words 148,231,294 1,796,763

ANEW words 8,176,669 (5.5%) 61,926 (3.5%)
Individuals ∼ 2,148,000 43
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Most frequent ANEW words:

Rank Song lyrics Song titles
1 love (7.37%) love (7.39%)
2 time (4.18%) time (4.19%)
3 baby (2.75%) baby (2.75%)
4 life (2.59%) life (2.60%)
5 heart (2.14%) heart (2.15%)

Rank Weblogs SOTU
1 good (4.89%) people (5.49%)
2 time (4.72%) time (4.09%)
3 people (3.94%) present (3.45%)
4 love (3.31%) world (3.10%)
5 life (3.13%) war (2.98%)
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Lyrics—average valence
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Lyrics—measurement robustness
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Lyrics—average valence of genres:
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Gospel/Soul (6.91)
Pop (6.69)
Reggae (6.40)
Rock (6.27)
Rap/Hip−Hop (6.01)
Punk (5.61)
Metal/Industrial (5.10)
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Valence shift details:

Given two texts a and b:
I Measure difference in average valence: v (b)

avg − v (a)
avg

I Break difference down by contributions from
individual words:

∆i = 100× [pi,b − pi,a]
[vi − v (a)

avg ]

[v (b)
avg − v (a)

avg ]∑
i

∆i = v (b)
avg − v (a)

avg

I Rank words by |∆i |
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Valence Shift
Word Graph:
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1 love ↓

lonely ↓
hate ↑
pain ↑
baby ↓
death ↑
dead ↑
home ↓
sick ↑
fear ↑
hit ↑
hell ↑
fall ↑
sin ↑
lost ↑

sad ↓
burn ↑
lie ↑
scared ↑
afraid ↑
music ↓

life ↑
god ↑

trouble ↓
loneliness ↓

W
ord num

ber i

Post versus pre 1980 for song lyrics

Per word valence shift ∆
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Top 50 of ' 20,000 artists:
Rank Artist Valence
1 All-4-One 7.15
2 Luther Vandross 7.12
3 S Club 7 7.05
4 K Ci & JoJo 7.04
5 Perry Como 7.04
6 Diana Ross & The Supremes 7.03
7 Buddy Holly 7.02
8 Faith Evans 7.01
9 The Beach Boys 7.01
10 Jon B 6.98
11 Dru Hill 6.96
12 Earth Wind & Fire 6.95
13 Ashanti 6.95
14 Otis Redding 6.93
15 Faith Hill 6.93
16 NSync 6.93

(criterion: ≥ 50 songs and ≥ 1000 ANEW words)
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Bottom 50 of ' 20,000 artists:
Rank Artist Valence
1 Slayer 4.80
2 Misfits 4.88
3 Staind 4.93
4 Slipknot 4.98
5 Darkthrone 4.98
6 Death 5.02
7 Black Label Society 5.05
8 Pig 5.08
9 Voivod 5.14
10 Fear Factory 5.15
11 Iced Earth 5.16
12 Simple Plan 5.16
13 Machine Head 5.17
14 Metallica 5.19
15 Dimmu Borgir 5.20
16 Mudvayne 5.21

(criterion: ≥ 50 songs and ≥ 1000 ANEW words)
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Blogs—Overall trend
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Blogs—Age

I Self-report studies find little variation in happiness
with age [7, 8]

I Surprising: Expect a rise and fall.
I A ‘challenge’ for theory...
I Related to the Easterlin Paradox:

Money doesn’t buy happiness
I But maybe it does a little bit—Veenhoven & Hagerty

(2003) and Wolfers & Stevenson (2008).
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Blogs—Age

I Self-report studies find little variation in happiness
with age [7, 8]

I Surprising: Expect a rise and fall.

I A ‘challenge’ for theory...
I Related to the Easterlin Paradox:

Money doesn’t buy happiness
I But maybe it does a little bit—Veenhoven & Hagerty

(2003) and Wolfers & Stevenson (2008).
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Blogs—Age

I Self-report studies find little variation in happiness
with age [7, 8]

I Surprising: Expect a rise and fall.
I A ‘challenge’ for theory...

I Related to the Easterlin Paradox:
Money doesn’t buy happiness

I But maybe it does a little bit—Veenhoven & Hagerty
(2003) and Wolfers & Stevenson (2008).
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Blogs—Age

I Self-report studies find little variation in happiness
with age [7, 8]

I Surprising: Expect a rise and fall.
I A ‘challenge’ for theory...
I Related to the Easterlin Paradox:

Money doesn’t buy happiness

I But maybe it does a little bit—Veenhoven & Hagerty
(2003) and Wolfers & Stevenson (2008).
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Blogs—Age

I Self-report studies find little variation in happiness
with age [7, 8]

I Surprising: Expect a rise and fall.
I A ‘challenge’ for theory...
I Related to the Easterlin Paradox:

Money doesn’t buy happiness
I But maybe it does a little bit—Veenhoven & Hagerty

(2003) and Wolfers & Stevenson (2008).
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Blogs
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I Average valence as a function of the age bloggers
report they will turn in the year of their posting.
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Blogs—Latitude
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latitude |degrees|

Near equator—social factors

I Increase in ‘sad’, ‘bored’,
‘lonely’, ‘stupid’, ‘guilty’

I Decrease in ‘good’ and
‘people’

Near poles—
social/psychological/climate

I Increase in ‘sick’, ‘guilty’,
‘cold’, ‘depressed’, and
‘headache’ and decrease of
‘love’ and ‘life.’

I Offset by decrease in ‘hurt’
and ‘pain.’

I More ‘bed’ and ‘sleep.’
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Blogs—day of the week

Very gentle weekly cycle:

W T F S S M T W

5.83

5.84

5.85

day of week

Monday is not so bad for bloggers...
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Outline

Measuring emotional content

Data sets
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Songs
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Presidential happiness:
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Measuring Emotional Content

Goal: Improve on ANEW study

I Perform survey as an online game.
I Local: university level
I Intermediate: representative groups
I Global: open on the Web

Measure emotional content of

I Many more words
I Phonemes and letters
I Sentences
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Measuring Emotional Content

Goal: Improve on ANEW study

I Perform survey as an online game.
I Local: university level
I Intermediate: representative groups
I Global: open on the Web

Measure emotional content of
I Many more words
I Phonemes and letters
I Sentences
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Where do superstars come from?

Rosen (1981): “The Economics of Superstars”

Examples:

I Full-time Comedians (≈ 200)
I Soloists in Classical Music
I Economic Textbooks (the usual myopic example)

I Highly skewed distributions (again)...
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Superstars

Rosen’s theory:

I Individual quality q maps to reward R(q)

I R(q) is ‘convex’ (d2R/dq2 > 0)
I Two reasons:

1. Imperfect substitution:
A very good surgeon is worth many mediocre ones

2. Technology:
Media spreads & technology reduces cost of
reproduction of books, songs, etc.

I No social element—success follows ‘inherent quality’
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Superstars

Adler (1985): “Stardom and Talent”

I Assumes extreme case of equal ‘inherent quality’
I Argues desire for coordination in knowledge and

culture leads to differential success
I Success is then purely a social construction
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Dominance hierarchies

Chase et al. (2002): “Individual differences versus social
dynamics in the formation of animal dominance
hierarchies” [3]

The aggressive female Metriaclima zebra (�):

Pecking orders for fish...

http://en.wikipedia.org/wiki/Metriaclima
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Dominance hierarchies

I Fish forget—changing of dominance hierarchies:

(one-sided binomial test: n ! 22, P " 0.001 and P " 0.03,
respectively). In this light, 27% of the groups with identical
hierarchies is very small.

Discussion. When we rewound the tape of the fish to form new
hierarchies, we usually did not get the same hierarchy twice. The
linearity of the structures persisted and the individuals stayed the
same, but their ranks did not. Thus our results differ considerably
from those predicted by the prior attributes hypothesis. The fact
that more identical hierarchies occurred than expected by chance
alone supports the hypothesis that rank on prior attributes
influences rank within hierarchies but not the hypothesis that

rank on prior attributes of itself creates the linear structure of the
hierarchies. Although 50% of the fish changed ranks from one
hierarchy to the other, almost all the hierarchies were linear in
structure. Some factor other than differences in attributes seems
to have ensured high rates of linearity. In the next experiment,
we tested to determine whether that factor might be social
dynamics.

It might seem possible that ‘‘noise,’’ random fluctuations in
individuals’ attributes or behaviors, could account for the ob-
served differences between the first and second hierarchies.
However, a careful consideration of the ways in which fluctua-
tions might occur shows that this explanation is unlikely. For
example, what if the differences were assumed to have occurred
because some of the fish changed their ranks on attributes from
the first to the second hierarchies? To account for our results,
this assumption would require a mixture of stability and insta-
bility in attribute ranks at just the right times and in just the right
proportion of groups. The rankings would have had to have been
stable for all the fish in all the groups for the day or two it took
them to form their first hierarchies (or we would not have seen
stable dominance relationships by our criterion). Then, in three-
quarters of the groups (but not in the remaining one-quarter)
various numbers of fish would have had to have swapped ranks
on attributes in the 2-week period of separation so as to have
produced different second hierarchies. And finally, the rankings
on attributes for all the fish in all the groups would have had to
have become stable once more for the day or two it took them
to form their second hierarchies.

Alternatively, instead of attribute rank determining domi-
nance rank as in the prior attribute model, dominance in pairs
of fish might be considered to have been probabilistic, such that
at one meeting one might dominate, but at a second meeting
there was some chance that the other might dominate. The
problem with this model is that earlier mathematical analysis
demonstrates that in situations in which one of each pair in a
group has even a small chance of dominating the other, the
probability of getting linear hierarchies is quite low (34). And
even in a more restrictive model in which only pairs of fish that
are close in rank in the first hierarchies have modest probabilities
of reversing their relationships, such as the level (0.25) we
observed in this experiment, the probability of getting as many
linear hierarchies as we observed is still very low (details are
available from the authors).

We know of only one other study (47) in which researchers
assembled groups to form initial hierarchies, separated the
individuals for a period, and then reassembled them to form a
second hierarchy (but see Guhl, ref. 48, for results in which
groups had pairwise encounters between assembly and reassem-
bly). Unfortunately, their techniques of analysis make it impos-
sible to compare results, because they examined correlations
between the frequency of aggressive acts directed by individuals
in pairs toward one another in the two hierarchies rather than
comparing the ranks of individuals. With these techniques it is
possible to get a positive correlation and thus a ‘‘replication’’ of
an original hierarchy in situations in which several animals
actually change ranks from the first to the second hierarchies.

Table 1. Percentage of groups with different numbers of fish
changing ranks between first and second hierarchies (n ! 22)

No. of fish changing ranks Percentage of groups

0 27.3
2 36.4
3 18.2
4 18.2

Fig. 1. Transition patterns between ranks of fish in the first and second
hierarchies. Frequencies of experimental groups showing each pattern are
indicated in parentheses. Open-headed arrows indicate transitions of rank.
Solid-headed arrows show dominance relationships in intransitive triads; all
the fish in an intransitive triad share the same rank.

5746 ! www.pnas.org"cgi"doi"10.1073"pnas.082104199 Chase et al.

(one-sided binomial test: n ! 22, P " 0.001 and P " 0.03,
respectively). In this light, 27% of the groups with identical
hierarchies is very small.

Discussion. When we rewound the tape of the fish to form new
hierarchies, we usually did not get the same hierarchy twice. The
linearity of the structures persisted and the individuals stayed the
same, but their ranks did not. Thus our results differ considerably
from those predicted by the prior attributes hypothesis. The fact
that more identical hierarchies occurred than expected by chance
alone supports the hypothesis that rank on prior attributes
influences rank within hierarchies but not the hypothesis that

rank on prior attributes of itself creates the linear structure of the
hierarchies. Although 50% of the fish changed ranks from one
hierarchy to the other, almost all the hierarchies were linear in
structure. Some factor other than differences in attributes seems
to have ensured high rates of linearity. In the next experiment,
we tested to determine whether that factor might be social
dynamics.

It might seem possible that ‘‘noise,’’ random fluctuations in
individuals’ attributes or behaviors, could account for the ob-
served differences between the first and second hierarchies.
However, a careful consideration of the ways in which fluctua-
tions might occur shows that this explanation is unlikely. For
example, what if the differences were assumed to have occurred
because some of the fish changed their ranks on attributes from
the first to the second hierarchies? To account for our results,
this assumption would require a mixture of stability and insta-
bility in attribute ranks at just the right times and in just the right
proportion of groups. The rankings would have had to have been
stable for all the fish in all the groups for the day or two it took
them to form their first hierarchies (or we would not have seen
stable dominance relationships by our criterion). Then, in three-
quarters of the groups (but not in the remaining one-quarter)
various numbers of fish would have had to have swapped ranks
on attributes in the 2-week period of separation so as to have
produced different second hierarchies. And finally, the rankings
on attributes for all the fish in all the groups would have had to
have become stable once more for the day or two it took them
to form their second hierarchies.

Alternatively, instead of attribute rank determining domi-
nance rank as in the prior attribute model, dominance in pairs
of fish might be considered to have been probabilistic, such that
at one meeting one might dominate, but at a second meeting
there was some chance that the other might dominate. The
problem with this model is that earlier mathematical analysis
demonstrates that in situations in which one of each pair in a
group has even a small chance of dominating the other, the
probability of getting linear hierarchies is quite low (34). And
even in a more restrictive model in which only pairs of fish that
are close in rank in the first hierarchies have modest probabilities
of reversing their relationships, such as the level (0.25) we
observed in this experiment, the probability of getting as many
linear hierarchies as we observed is still very low (details are
available from the authors).

We know of only one other study (47) in which researchers
assembled groups to form initial hierarchies, separated the
individuals for a period, and then reassembled them to form a
second hierarchy (but see Guhl, ref. 48, for results in which
groups had pairwise encounters between assembly and reassem-
bly). Unfortunately, their techniques of analysis make it impos-
sible to compare results, because they examined correlations
between the frequency of aggressive acts directed by individuals
in pairs toward one another in the two hierarchies rather than
comparing the ranks of individuals. With these techniques it is
possible to get a positive correlation and thus a ‘‘replication’’ of
an original hierarchy in situations in which several animals
actually change ranks from the first to the second hierarchies.

Table 1. Percentage of groups with different numbers of fish
changing ranks between first and second hierarchies (n ! 22)

No. of fish changing ranks Percentage of groups

0 27.3
2 36.4
3 18.2
4 18.2

Fig. 1. Transition patterns between ranks of fish in the first and second
hierarchies. Frequencies of experimental groups showing each pattern are
indicated in parentheses. Open-headed arrows indicate transitions of rank.
Solid-headed arrows show dominance relationships in intransitive triads; all
the fish in an intransitive triad share the same rank.

5746 ! www.pnas.org"cgi"doi"10.1073"pnas.082104199 Chase et al.

I 22 observations: about 3/4 of the time, hierarchy
changed
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Music Lab Experiment

48 songs
30,000 participants

multiple ‘worlds’
Inter-world variability

Salganik, Dodds, and Watts (2006)
“An experimental study of inequality and unpredictability in an
artificial cultural market” [18]
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Music Lab Experiment
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Music Lab Experiment

Experiment 1 Experiments 2–4
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Music Lab Experiment
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I Variability in final rank.
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Music Lab Experiment
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Music Lab Experiment
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Music Lab Experiment

Sensible result:
I Stronger social signal leads to greater following and

greater inequality.

Peculiar result:

I Stronger social signal leads to greater
unpredictability.

Very peculiar observation:

I The most unequal distributions would suggest the
greatest variation in underlying ‘quality.’

I But success may be due to social construction
through following.

I ‘Payola’ leads to poor system performance.
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Music Lab Experiment

Sensible result:
I Stronger social signal leads to greater following and

greater inequality.

Peculiar result:
I Stronger social signal leads to greater

unpredictability.

Very peculiar observation:

I The most unequal distributions would suggest the
greatest variation in underlying ‘quality.’

I But success may be due to social construction
through following.

I ‘Payola’ leads to poor system performance.
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Music Lab Experiment

Sensible result:
I Stronger social signal leads to greater following and

greater inequality.

Peculiar result:
I Stronger social signal leads to greater

unpredictability.

Very peculiar observation:

I The most unequal distributions would suggest the
greatest variation in underlying ‘quality.’

I But success may be due to social construction
through following.

I ‘Payola’ leads to poor system performance.
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Music Lab Experiment

Sensible result:
I Stronger social signal leads to greater following and

greater inequality.

Peculiar result:
I Stronger social signal leads to greater

unpredictability.

Very peculiar observation:

I The most unequal distributions would suggest the
greatest variation in underlying ‘quality.’

I But success may be due to social construction
through following.

I ‘Payola’ leads to poor system performance.
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Music Lab Experiment

Sensible result:
I Stronger social signal leads to greater following and

greater inequality.

Peculiar result:
I Stronger social signal leads to greater

unpredictability.

Very peculiar observation:

I The most unequal distributions would suggest the
greatest variation in underlying ‘quality.’

I But success may be due to social construction
through following.

I ‘Payola’ leads to poor system performance.
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Music Lab Experiment—Sneakiness
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Inverted worlds

I Inversion of download count

I The ‘pretend rich’ get richer ...
I ... but at a slower rate



Happiness

Measuring
emotional content

Data sets

Analysis
Songs

Blogs

SOTU

Winning: it’s not for
everyone

Prediction

References

Frame 58/65

Music Lab Experiment—Sneakiness
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Closing aside on Prediction:

Alan Greenspan (September 18, 2007):

“I’ve been dealing with these big
mathematical models of forecasting the
economy ...

If I could figure out a way to determine
whether or not people are more fearful
or changing to more euphoric,

I don’t need any of this other stuff.

I could forecast the economy better than
any way I know.”

http://wikipedia.org

http://wikipedia.org
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Economics, Schmeconomics

Greenspan continues:

“The trouble is that we can’t figure that out. I’ve been in
the forecasting business for 50 years. I’m no better than I
ever was, and nobody else is. Forecasting 50 years
ago was as good or as bad as it is today. And the reason
is that human nature hasn’t changed. We can’t improve
ourselves.”

Jon Stewart:

“You just bummed the @*!# out of me.”

wildbluffmedia.com

I From the Daily Show (�) (September 18, 2007)

wildbluffmedia.com
http://www.thedailyshow.com
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