
Addressing the validation problem for social
simulations: the Adversarial Scheduling
Approach

Author Gabriel Istrate, eAustria Research Institute, Timişoara,
Romania. email: gabrielistrate@acm.org

Conference International Workshop on Challenges and Visions in the
Social Sciences

Two sides of the same coin

Share family of similar interaction-based models (Blume
and Durlauf)

Two sides of the same coin

Share family of similar interaction-based models (Blume
and Durlauf)

Agents located at the vertices of a graph.

Two sides of the same coin

Share family of similar interaction-based models (Blume
and Durlauf)

Agents located at the vertices of a graph.

They have a state.

Two sides of the same coin

Share family of similar interaction-based models (Blume
and Durlauf)

Agents located at the vertices of a graph.

They have a state.

They update the state based on social (network)
interaction. Game-theoretic.

Interpreting results

For a large class of models: results⇒ stylized facts ⇒
mechanisms.

Interpreting results

For a large class of models: results⇒ stylized facts ⇒
mechanisms.

Causal connections between features of the simulation
process/mathematical result.

Interpreting results

For a large class of models: results⇒ stylized facts ⇒
mechanisms.

Causal connections between features of the simulation
process/mathematical result.

Example from EGT: equilibrium selection.

Interpreting results

For a large class of models: results⇒ stylized facts ⇒
mechanisms.

Causal connections between features of the simulation
process/mathematical result.

Example from EGT: equilibrium selection.

Peyton-Young: adding continuous noise to best-response
dynamics can select (risk dominant) equilibria.

Verification & Validation

How can we make sure that conclusions do not crucially
depend on particular assumptions of the model ?

Verification & Validation

How can we make sure that conclusions do not crucially
depend on particular assumptions of the model ?

Not merely academic: TRANSIMS (multi-million $
program, U.S. DOT), epidemics (Epstein et al.,
EPISIMS).

Verification & Validation

How can we make sure that conclusions do not crucially
depend on particular assumptions of the model ?

Not merely academic: TRANSIMS (multi-million $
program, U.S. DOT), epidemics (Epstein et al.,
EPISIMS).

Factors: social network topology, interaction structure
(”higher-order emergence”),

Verification & Validation

How can we make sure that conclusions do not crucially
depend on particular assumptions of the model ?

Not merely academic: TRANSIMS (multi-million $
program, U.S. DOT), epidemics (Epstein et al.,
EPISIMS).

Factors: social network topology, interaction structure
(”higher-order emergence”),

Scheduling: order in which agents update.

Verification & Validation

How can we make sure that conclusions do not crucially
depend on particular assumptions of the model ?

Not merely academic: TRANSIMS (multi-million $
program, U.S. DOT), epidemics (Epstein et al.,
EPISIMS).

Factors: social network topology, interaction structure
(”higher-order emergence”),

Scheduling: order in which agents update.

Synchronous vs asynchronous (Huberman & Glance)

Verification & Validation

How can we make sure that conclusions do not crucially
depend on particular assumptions of the model ?

Not merely academic: TRANSIMS (multi-million $
program, U.S. DOT), epidemics (Epstein et al.,
EPISIMS).

Factors: social network topology, interaction structure
(”higher-order emergence”),

Scheduling: order in which agents update.

Synchronous vs asynchronous (Huberman & Glance)

Want something more principled.

Context: Mechanism-based explanations

Epstein: to explain a phenomenon P is to grow it.

Context: Mechanism-based explanations

Epstein: to explain a phenomenon P is to grow it.
Analytical social science (Hedström): mechanism-based

explanations.
. . .

eventually P.

Context: Mechanism-based explanations

Epstein: to explain a phenomenon P is to grow it.
Analytical social science (Hedström): mechanism-based

explanations.
. . .

eventually P.
One of three types of explanations. Covering laws,
statistical correlation laws. Mechanisms concatenate

Context: Mechanism-based explanations

Epstein: to explain a phenomenon P is to grow it.
Analytical social science (Hedström): mechanism-based

explanations.
. . .

eventually P.
One of three types of explanations. Covering laws,
statistical correlation laws. Mechanisms concatenate
What precisely is a mechanism ? Can we automate
identification of mechanisms in social simulations ?

Context: Mechanism-based explanations

Epstein: to explain a phenomenon P is to grow it.
Analytical social science (Hedström): mechanism-based

explanations.
. . .

eventually P.
One of three types of explanations. Covering laws,
statistical correlation laws. Mechanisms concatenate
What precisely is a mechanism ? Can we automate
identification of mechanisms in social simulations ?
Formal logic in social science: not that popular.
Temporal logic (Elster), logic in organization theory
(Péli, Hannan).

Adversarial Scheduling

This talk: develop a game-theoretical model in a
bottom-up fashion. Identify mechanism-like
explanations for properties each model in the sequence.

Adversarial Scheduling

This talk: develop a game-theoretical model in a
bottom-up fashion. Identify mechanism-like
explanations for properties each model in the sequence.

Concentrate on one single factor: update order.

Adversarial Scheduling

This talk: develop a game-theoretical model in a
bottom-up fashion. Identify mechanism-like
explanations for properties each model in the sequence.

Concentrate on one single factor: update order.

Mathematical models: controlled experiments for causal
identification.

Adversarial Scheduling

This talk: develop a game-theoretical model in a
bottom-up fashion. Identify mechanism-like
explanations for properties each model in the sequence.

Concentrate on one single factor: update order.

Mathematical models: controlled experiments for causal
identification.

Bottom-up approach: start with basic features. Add (in
a controlled manner) new features.

Adversarial Scheduling

This talk: develop a game-theoretical model in a
bottom-up fashion. Identify mechanism-like
explanations for properties each model in the sequence.

Concentrate on one single factor: update order.

Mathematical models: controlled experiments for causal
identification.

Bottom-up approach: start with basic features. Add (in
a controlled manner) new features.

Strategy used in Sugarscape (Axtell-Epstein), Brownian
agents (Schweitzer), varieties of emergence (Gilbert).

Adversarial Scheduling

This talk: develop a game-theoretical model in a
bottom-up fashion. Identify mechanism-like
explanations for properties each model in the sequence.

Concentrate on one single factor: update order.

Mathematical models: controlled experiments for causal
identification.

Bottom-up approach: start with basic features. Add (in
a controlled manner) new features.

Strategy used in Sugarscape (Axtell-Epstein), Brownian
agents (Schweitzer), varieties of emergence (Gilbert).

Provides insight on ingredients of mechanism-based
explanations.

Base model

n uncoupled agents. Each makes a choice between two
states, A and B. Each agent same utility, u(A) > u(B).

Base model

n uncoupled agents. Each makes a choice between two
states, A and B. Each agent same utility, u(A) > u(B).

”Stylized” fact: system converges to ”all A” state.

Base model

n uncoupled agents. Each makes a choice between two
states, A and B. Each agent same utility, u(A) > u(B).

”Stylized” fact: system converges to ”all A” state.

Stylized fact:
. . .

fair(S) ≫ eventually (∀x) A(x)

Base model

n uncoupled agents. Each makes a choice between two
states, A and B. Each agent same utility, u(A) > u(B).

”Stylized” fact: system converges to ”all A” state.

Stylized fact:
. . .

fair(S) ≫ eventually (∀x) A(x)

Left/right hand sides: properties of processes.

Base model

n uncoupled agents. Each makes a choice between two
states, A and B. Each agent same utility, u(A) > u(B).

”Stylized” fact: system converges to ”all A” state.

Stylized fact:
. . .

fair(S) ≫ eventually (∀x) A(x)

Left/right hand sides: properties of processes.

Second stylized fact: convergence time n log(n) + θ(n).
Coupon Collector Lemma.

Base model

n uncoupled agents. Each makes a choice between two
states, A and B. Each agent same utility, u(A) > u(B).

”Stylized” fact: system converges to ”all A” state.

Stylized fact:
. . .

fair(S) ≫ eventually (∀x) A(x)

Left/right hand sides: properties of processes.

Second stylized fact: convergence time n log(n) + θ(n).
Coupon Collector Lemma.

Adversarial Scheduling: fair scheduler. One that touches
all nodes.

Base model

n uncoupled agents. Each makes a choice between two
states, A and B. Each agent same utility, u(A) > u(B).

”Stylized” fact: system converges to ”all A” state.

Stylized fact:
. . .

fair(S) ≫ eventually (∀x) A(x)

Left/right hand sides: properties of processes.

Second stylized fact: convergence time n log(n) + θ(n).
Coupon Collector Lemma.

Adversarial Scheduling: fair scheduler. One that touches
all nodes.

Second stylized fact: covering law. Mapping from one
domain (balls and bins) to agents.

n balls
n ln(n) + cn bins

random(S)

Pr[nonempty]∼ 1 − e−e−c

⇒

n agents
n ln(n) + cn time steps

random(S)

Pr[state A]∼ 1 − e−e−c

Second version

n uncoupled agents. Each makes a choice between two
states, A and B.

Second version

n uncoupled agents. Each makes a choice between two
states, A and B..

Each agent chooses better state with fixed probability
1 − ǫ.

Second version

n uncoupled agents. Each makes a choice between two
states, A and B..

Each agent chooses better state with fixed probability
1 − ǫ.

Now: no longer fixed point A. Instead: ”most” states A
most of the time.

Second version

n uncoupled agents. Each makes a choice between two
states, A and B..

Each agent chooses better state with fixed probability
1 − ǫ.

Now: no longer fixed point A. Instead: ”most” states A
most of the time.

What about adversarial scheduling ?

Second version

n uncoupled agents. Each makes a choice between two
states, A and B..

Each agent chooses better state with fixed probability
1 − ǫ.

Now: no longer fixed point A. Instead: ”most” states A
most of the time.

What about adversarial scheduling ?

Is stylized fact
. . .

fair(S) ≫ eventually (≥ (1 − ǫ)%x) A(x)
true ?

If scheduler can act based on agents’ state: can
preclude state A !

Second version

n uncoupled agents. Each makes a choice between two
states, A and B..

Each agent chooses better state with fixed probability
1 − ǫ.

Now: no longer fixed point A. Instead: ”most” states A
most of the time.

What about adversarial scheduling ?

Is stylized fact
. . .

fair(S) ≫ eventually (≥ (1 − ǫ)%x) A(x)
true ?

If scheduler can act based on agents’ state: can
preclude state A !

Scheduling effectively introduces coupling in the system.

Third version: adding interaction

A B

A (a,a) (c,d)

B (d,c) (b,b)

A is a risk-dominant equilibrium.

Third version: adding interaction

A B

A (a,a) (c,d)

B (d,c) (b,b)

A is a risk-dominant equilibrium.

pβ(xi → z |x) ∼ eβ·νi (z,x−i), where νi (z , x−i), the payoff
of the i ’th agent should he play strategy z while the
others’ profile remains the same is given by
νi (z , x−i) =

∑
(i ,j)∈E wijmz,xj

.

Peyton-Young’s result

Definition Consider a Markov process P0 defined on a finite state
space Ω. For each ǫ > 0, define a Markov process Pǫ on
Ω. Pǫ is a regular perturbed Markov process if all of the
following conditions hold.

Pǫ is irreducible for every ǫ > 0.

Peyton-Young’s result

Definition Consider a Markov process P0 defined on a finite state
space Ω. For each ǫ > 0, define a Markov process Pǫ on
Ω. Pǫ is a regular perturbed Markov process if all of the
following conditions hold.

Pǫ is irreducible for every ǫ > 0.

For every x , y ∈ Ω, limǫ>0 Pǫ
xy = P0

xy .

Peyton-Young’s result

Definition Consider a Markov process P0 defined on a finite state
space Ω. For each ǫ > 0, define a Markov process Pǫ on
Ω. Pǫ is a regular perturbed Markov process if all of the
following conditions hold.

Pǫ is irreducible for every ǫ > 0.

For every x , y ∈ Ω, limǫ>0 Pǫ
xy = P0

xy .

If Pxy > 0 then there exists r(m) > 0, the resistance of
transition m = (x → y), such that as ǫ → 0,
Pǫ

xy = Θ(ǫr(m)).

Let µǫ be the (unique) stationary distribution of Pǫ. A
state S is a stochastically stable strategy if
limǫ→0 µǫ(S) > 0.

Peyton Young ǫ = eβ .

Peyton-Young’s result

Definition Consider a Markov process P0 defined on a finite state
space Ω. For each ǫ > 0, define a Markov process Pǫ on
Ω. Pǫ is a regular perturbed Markov process if all of the
following conditions hold.

Pǫ is irreducible for every ǫ > 0.

For every x , y ∈ Ω, limǫ>0 Pǫ
xy = P0

xy .

If Pxy > 0 then there exists r(m) > 0, the resistance of
transition m = (x → y), such that as ǫ → 0,
Pǫ

xy = Θ(ǫr(m)).

Let µǫ be the (unique) stationary distribution of Pǫ. A
state S is a stochastically stable strategy if
limǫ→0 µǫ(S) > 0.

Peyton Young ǫ = eβ .

Theorem (P.Y.) Under random scheduling A only
stochastically stable state.

Peyton-Young under adversarial scheduling

A random scheduler is nonadaptive: does not use state
information in order to choose next agent to update.

Peyton-Young under adversarial scheduling

A random scheduler is nonadaptive: does not use state
information in order to choose next agent to update.

Adaptive agents can preclude stability. Pick any agent.
Schedule until it plays B. Go to other agent. Repeat.

Peyton-Young under adversarial scheduling

A random scheduler is nonadaptive: does not use state
information in order to choose next agent to update.

Adaptive agents can preclude stability. Pick any agent.
Schedule until it plays B. Go to other agent. Repeat.

Basic non-adaptive agent: random walk on a given
graph.

Peyton-Young under adversarial scheduling

A random scheduler is nonadaptive: does not use state
information in order to choose next agent to update.

Adaptive agents can preclude stability. Pick any agent.
Schedule until it plays B. Go to other agent. Repeat.

Basic non-adaptive agent: random walk on a given
graph.

Generalizes random scheduler (random walk on the
complete graph).

Peyton-Young under adversarial scheduling

A random scheduler is nonadaptive: does not use state
information in order to choose next agent to update.

Adaptive agents can preclude stability. Pick any agent.
Schedule until it plays B. Go to other agent. Repeat.

Basic non-adaptive agent: random walk on a given
graph.

Generalizes random scheduler (random walk on the
complete graph).

Markov chain on state space V {A,B} × V .

Peyton-Young under adversarial scheduling

A random scheduler is nonadaptive: does not use state
information in order to choose next agent to update.

Adaptive agents can preclude stability. Pick any agent.
Schedule until it plays B. Go to other agent. Repeat.

Basic non-adaptive agent: random walk on a given
graph.

Generalizes random scheduler (random walk on the
complete graph).

Markov chain on state space V {A,B} × V .

Theorem [GMR08]: Under RW scheduling the set
S0 = {(A, x)|x ∈ V } is the set of stochastically stable
states.

Proof idea

Definition A tree rooted at node j is a set T of edges such that for
any state w 6= j there exists a unique (directed) path
from w to j . The resistance of a rooted tree T is the
sum of resistances of all edges in T .

Proposition Let Pǫ be a regular perturbed Markov process, and for
each ǫ > 0 let µǫ be the unique stationary distribution
of Pǫ. Then limǫ→0 µǫ = µ0 exists, and µ0 is a
stationary distribution of P0. The stochastically stable
states are precisely those states z such that there exists
a tree rooted at z of minimal resistance (among all
rooted trees).

Proof idea (II)

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

X

Y

Use Peyton-Young’s criterion for stochastic stability.

Proof idea (II)

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

X

Y

Use Peyton-Young’s criterion for stochastic stability.

Choose Y ∈ S0, X 6∈ S0 and a tree T of minimal
potential rooted at X . Transform T into a tree of
smaller potential rooted at Y .

Proof idea (II)

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

X

Y

Use Peyton-Young’s criterion for stochastic stability.

Choose Y ∈ S0, X 6∈ S0 and a tree T of minimal
potential rooted at X . Transform T into a tree of
smaller potential rooted at Y .

”Reverse” path from X to Y . Transform subtrees of T
(four cases).

Proof idea (II)

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

X

Y

Use Peyton-Young’s criterion for stochastic stability.

Choose Y ∈ S0, X 6∈ S0 and a tree T of minimal
potential rooted at X . Transform T into a tree of
smaller potential rooted at Y .

”Reverse” path from X to Y . Transform subtrees of T
(four cases).

Proof idea (III)

Y

X

potential

4

32

1

Crucial: potential game. There is a ”potential
function” on V {A,B} whose variations measure
resistance.

Proof idea (III)

Y

X

potential

4

32

1

Crucial: potential game. There is a ”potential
function” on V {A,B} whose variations measure
resistance.

Positive resistance move I: state does not change,
changing state would be better. Positive resistance
move II: state changes, but not optimal move.

Proof idea (III)

Y

X

potential

4

32

1

Crucial: potential game. There is a ”potential
function” on V {A,B} whose variations measure
resistance.

Positive resistance move I: state does not change,
changing state would be better. Positive resistance
move II: state changes, but not optimal move.

State A: highest potential. Potential difference between
path and its ”reverse” = difference between endpoints.

Proof idea (III)

Y

X

potential

4

32

1

Crucial: potential game. There is a ”potential
function” on V {A,B} whose variations measure
resistance.

Positive resistance move I: state does not change,
changing state would be better. Positive resistance
move II: state changes, but not optimal move.

State A: highest potential. Potential difference between
path and its ”reverse” = difference between endpoints.

Potential game & . . .

fair(S) & nonadaptive(S) ≫ ”(∀x) A(x) only stable state”

Application: Schelling’s Segregation Model

n 2n

u=Zx/n
u=(2Z−M)+(M−Z)*x/n

Z

M

Payoff(u)

Similar idea: Schelling’s Segregation Model.
Peyton-Young (1-D), Zhang, Pollicott& Weiss (2-D).

Application: Schelling’s Segregation Model

n 2n

u=Zx/n
u=(2Z−M)+(M−Z)*x/n

Z

M

Payoff(u)

Similar idea: Schelling’s Segregation Model.
Peyton-Young (1-D), Zhang, Pollicott& Weiss (2-D).

Scheduler: (Markovian contagion)
To each pair of vertices e we associate a probability
distribution De on V × V . We then choose the next
scheduled pair according to the following process: If ti is
the pair scheduled at stage i , we chose ti+1, the next
scheduled pair, by sampling from Dti .

Application: Schelling’s Segregation Model
(II)

Agents’ utility function: ui (·) = rw(·) + ǫ, where r is a
positive constant, and w(x) is defined as the difference
between the number of neighbours of x having the same
color and the number of neighbors of x having the
opposite color. Further assumptiion: same constant r ,
but possibly different constants ǫ.

Update:

Pr [switch] = eβ[u1(·|switch)+u2(·|switch)]

eβ[u1(·|switch)+u2(·|switch)]+

+eβ[u1(·|not switch)+u2(·|not switch)] ,

Application: Schelling’s Segregation Model
(II)

Agents’ utility function: ui (·) = rw(·) + ǫ, where r is a
positive constant, and w(x) is defined as the difference
between the number of neighbours of x having the same
color and the number of neighbors of x having the
opposite color. Further assumptiion: same constant r ,
but possibly different constants ǫ.

Update:

Pr [switch] = eβ[u1(·|switch)+u2(·|switch)]

eβ[u1(·|switch)+u2(·|switch)]+

+eβ[u1(·|not switch)+u2(·|not switch)] ,

Several details specific to Schelling’s SM. Structure of
stochastically stable states.

Back to Potential Games and
Peyton-Young

Second P-Y: how convergence time relates to network
structure.

Back to Potential Games and
Peyton-Young

Second P-Y: how convergence time relates to network
structure.
Given a graph G , a nonempty subset S of vertices and a
real number 0 ≤ r ≤ 1/2 we say that S is r -close-knit if

∀S ′ ⊆ S , S ′ 6= ∅,
e(S ′, S)

∑
i∈S ′ deg(i)

≥ r ,

where e(S ′, S) is the number of edges with one
endpoint in S ′ and the other in S , and deg(i) is the
degree of vertex i . A graph G is (r , k)-close-knit if every
vertex is part of a r -close-knit set S , with |S | = k .

Back to Potential Games and
Peyton-Young

Second P-Y: how convergence time relates to network
structure.
Given a graph G , a nonempty subset S of vertices and a
real number 0 ≤ r ≤ 1/2 we say that S is r -close-knit if

∀S ′ ⊆ S , S ′ 6= ∅,
e(S ′, S)

∑
i∈S ′ deg(i)

≥ r ,

where e(S ′, S) is the number of edges with one
endpoint in S ′ and the other in S , and deg(i) is the
degree of vertex i . A graph G is (r , k)-close-knit if every
vertex is part of a r -close-knit set S , with |S | = k .
Does not extend to Markovian contagion: line graph
L2n+1 on 2n + 1 nodes labeled −n, . . . ,−1, 0, 1 . . . n.
Random walk from the origin. Convergence time θ(n2).

Back to Potential Games and
Peyton-Young

Second P-Y: how convergence time relates to network
structure.
Given a graph G , a nonempty subset S of vertices and a
real number 0 ≤ r ≤ 1/2 we say that S is r -close-knit if

∀S ′ ⊆ S , S ′ 6= ∅,
e(S ′, S)

∑
i∈S ′ deg(i)

≥ r ,

where e(S ′, S) is the number of edges with one
endpoint in S ′ and the other in S , and deg(i) is the
degree of vertex i . A graph G is (r , k)-close-knit if every
vertex is part of a r -close-knit set S , with |S | = k .
Does not extend to Markovian contagion: line graph
L2n+1 on 2n + 1 nodes labeled −n, . . . ,−1, 0, 1 . . . n.
Random walk from the origin. Convergence time θ(n2).
Generalization: parameter called Matthews bound for
Markov chains. Upper bounds on convergence time.

Extension: work in progress

1

0

Markovian contagion: only one agent able to update.

Extension: work in progress

1

0

Markovian contagion: only one agent able to update.

Extension: influence model (Asavathiratham, 2000).

Extension: work in progress

1

0

Markovian contagion: only one agent able to update.

Extension: influence model (Asavathiratham, 2000).

”Evil-rain” model (binary influence).

Extension: work in progress

1

0

Markovian contagion: only one agent able to update.

Extension: influence model (Asavathiratham, 2000).

”Evil-rain” model (binary influence).

Two sites inject 0/1 in the system. Ones perform
random walk until deleted by injected 0.

Extension: work in progress

1

0

Markovian contagion: only one agent able to update.

Extension: influence model (Asavathiratham, 2000).

”Evil-rain” model (binary influence).

Two sites inject 0/1 in the system. Ones perform
random walk until deleted by injected 0.

Markovian model: V {A,B}×{0,1}.

Stochastic stability ≡ ”all A” states.

Can this be done in Social Simulations ?

I believe: to a limited extent yes.

Can this be done in Social Simulations ?

I believe: to a limited extent yes.

Similar to model checking paradigm in hardware
verification (e.g. Clarke, Grumberg, Peled).

Needed: specification language for social simulation.

Can this be done in Social Simulations ?

I believe: to a limited extent yes.

Similar to model checking paradigm in hardware
verification (e.g. Clarke, Grumberg, Peled).

Needed: specification language for social simulation.

Abstract State Machines (Gläesser). Computational
Criminology.

Can this be done in Social Simulations ?

I believe: to a limited extent yes.

Similar to model checking paradigm in hardware
verification (e.g. Clarke, Grumberg, Peled).

Needed: specification language for social simulation.

Abstract State Machines (Gläesser). Computational
Criminology.

Ingredient: contexts as first-class objects. Situation
Theory (Devlin)

Can this be done in Social Simulations ?

I believe: to a limited extent yes.

Similar to model checking paradigm in hardware
verification (e.g. Clarke, Grumberg, Peled).

Needed: specification language for social simulation.

Abstract State Machines (Gläesser). Computational
Criminology.

Ingredient: contexts as first-class objects. Situation
Theory (Devlin)

Express (some form of) causality.

Can this be done in Social Simulations ?

I believe: to a limited extent yes.

Similar to model checking paradigm in hardware
verification (e.g. Clarke, Grumberg, Peled).

Needed: specification language for social simulation.

Abstract State Machines (Gläesser). Computational
Criminology.

Ingredient: contexts as first-class objects. Situation
Theory (Devlin)

Express (some form of) causality.

Ingredient: processes as first-class objects. Executable
specification to make model-checking/monitoring
tractable.

