

CHAIRS OF SOCIOLOGY Signaling Models and Experiments A Research Perspective

Andreas Diekmann and Wojtek Przepiorka

Zurich workshop "Challenges and Visions in the Social Sciences" August 18th to 23rd, 2008

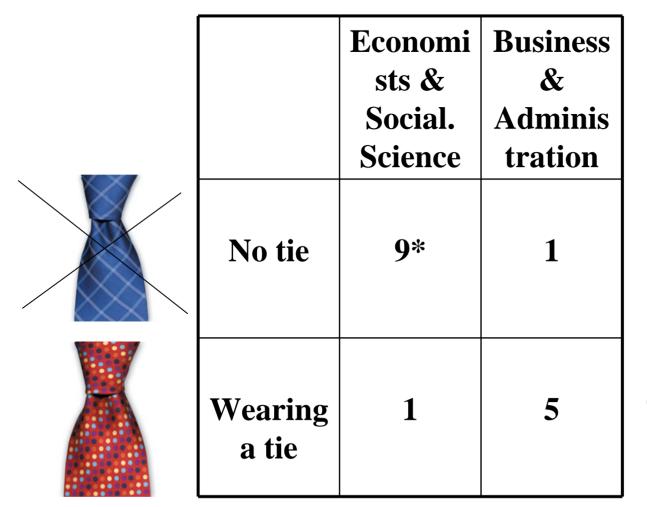
Mount Hope,Holmes County © Ian Adams

Signaling Theory

Signal your type: Method to achieve cooperation in a social dilemma situation if information is incomplete

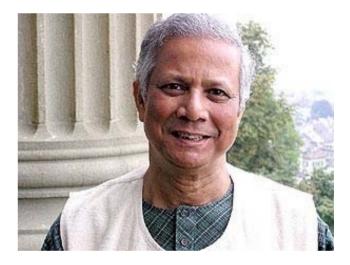
Explaining seemingly irrational behaviour: Large investments in "distinctions" (Bourdieu), conspicous consumption (Veblen), dress codes, "inefficient" social norms (Posner), wasting resources (advertisement campaigns), donations and gift-giving (Camerer).

Signaling your type!



Faculty meeting, University of Bern, June 20th, 2002, temperature 30° C

 φ -coefficient = 0.73


*including observer

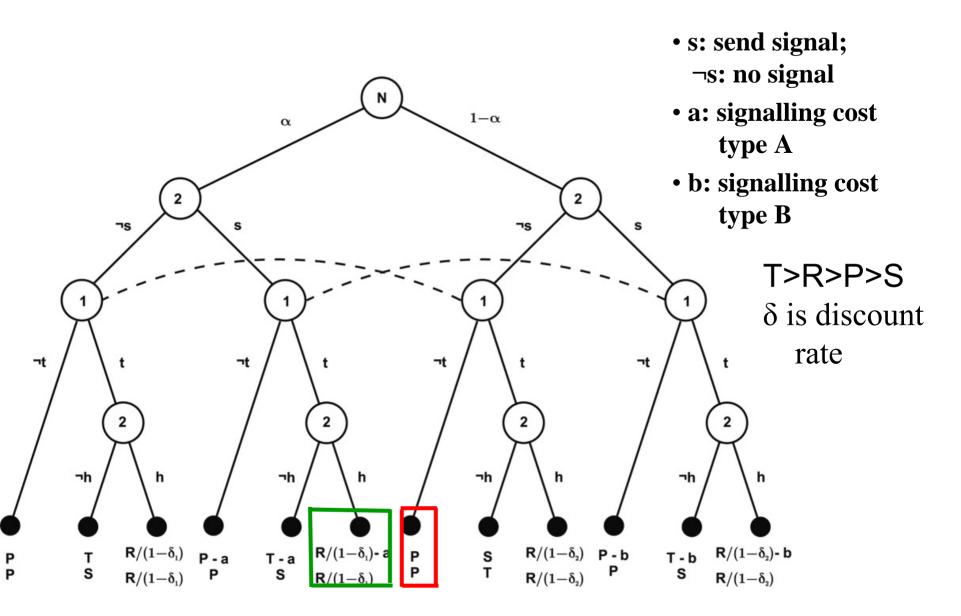
Trust game under incomplete information with Signaling (Model based on Posner ,,Law and Social Norms")

- We assume a trust situation with two types of actors. Actors have the same preferences but act under different structural conditions. Type A plays a repeated game while type B is in a one-shot situation. ("Stayer" versus "Mover".) Hence, types can be distinguished by discount parameters. However, there is incomplete information. The trustor does not know the type of the trustee.
- Note: We do not assume ,,honest" or ,,dishonest" preferences. With a high proportion of ,,mover" no cooperation will emerge.
- Signaling the type may help to promote cooperation. (Signaling theory of social norms.)

Example: Microcredits

Muhammad Yunus, Gründer der Grameen Bank und Gewinner des Friedens-Nobelpreises 2006.

The Grameen Bank preferably lends money to women. Women take care of children and are less probable to be fly-bynights.


Example: Engagement rings

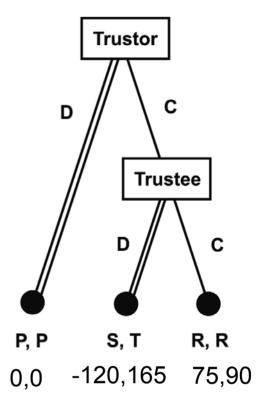
In the US, men are expected to spend up to 3 monthly wages on an engagement ring.

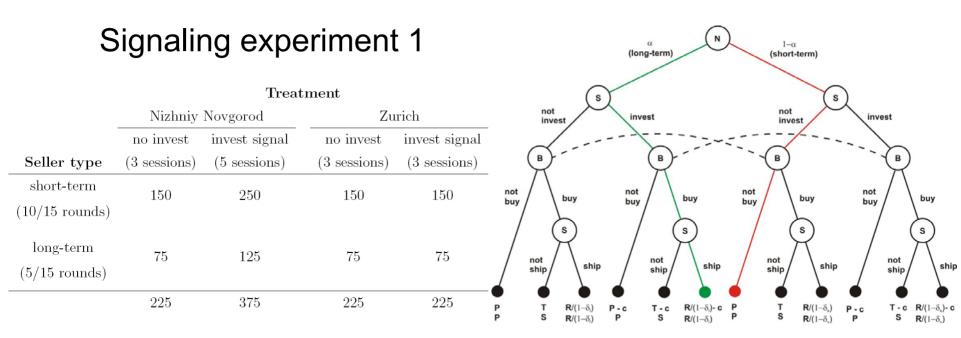
Trust game with signals of trustworthiness

Conditions for a separating signaling equilibrium

Equilibrium strategies (,,Perfect Bayesian equilibrium'')

- Type A signals (s), type B does not signal (¬s).
- Trustor chooses trust (t) if s, otherwise no trust (¬t).
- Type A honors trust.


Extension: Equilibrium strategy if s is the amount of an investment. A invests $s^* = T - P + \varepsilon$, B invests 0. Trustor cooperates if $s = s^*$ and defects otherwise.


Hypotheses

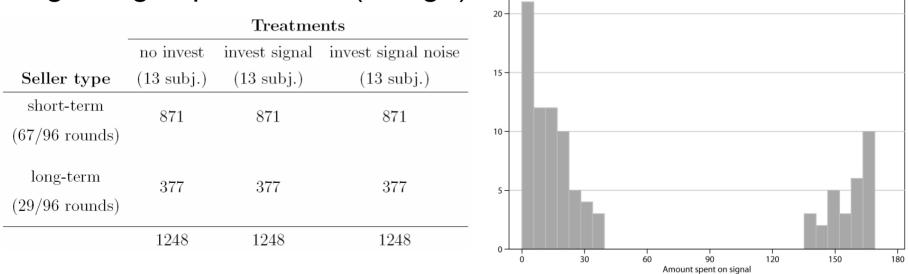
- 1. Trustees of type A have a higher likelihood to signal than type B trustees.
- 2. Trustors respond to signals by an increased likelihood of cooperation.
- 3. Trustees of type A reciprocate trust while type B trustees are expected to exploit trustor.

Experimental Design

- 5 buyers (trustors) and 5 sellers (trustees) play 15 trust games
- with seller's payoffs P=0, R=90, T=165 and buyer's payoff P=0, R=75, S= -120.
- 5 interactions repeated (type A), 10 interactions one-shot trust game (type B) (α=1/3 is common knowledge)
- Treatment: Control (no signal possible) versus signalling condition. Sellers can spend up to 175 points for signal.
- 80 subjects in Russia, 90 subjects in Switzerland

N.N.: $\Delta c = 13.4$, t = 2.95, p = 0.007 Zurich: $\Delta c = 24.4$, t = 5.48, p < 0.001 N.N.: OR = 0.53, z = -1.87, p = 0.06 Zurich: OR = 0.67, z = -1.08, p = 0.28 N.N.: OR = 20.1, z = 7.38, p < 0.001 Zurich: OR = 109.8, z = 5.84, p < 0.001

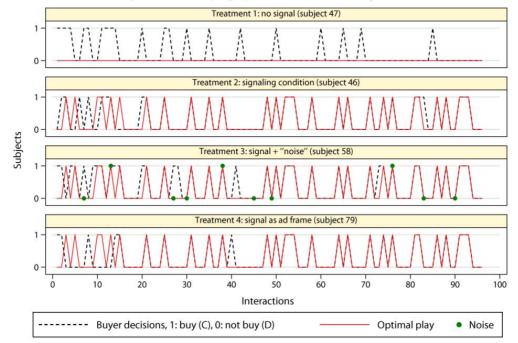
(OLS and logit regressions, two-sided tests with robust standard errors accounting for within subject clustering)


Learning: Evolution of Response to Signal

Trustee simulated by computer (subject informed!)

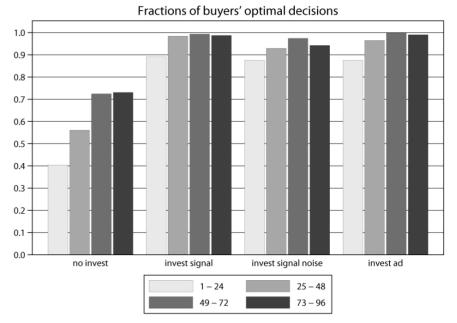
Random signal plus noise over ca. 100 rounds

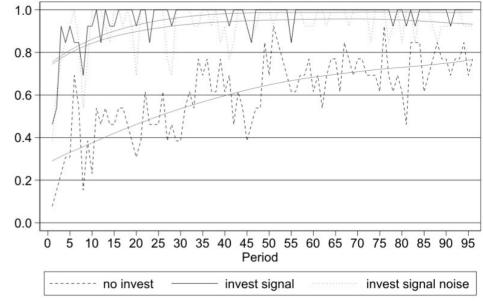
Treatments:


- 1. no signal (control)
- 2. signal (low versus high plus error component)
- **3. signal (plus small probability of trustor's error)**
- 4. signal as ad frame

Frequncy distribution of amount spent on signal by simulated trustee (seller)

Signaling experiment 2 (design)

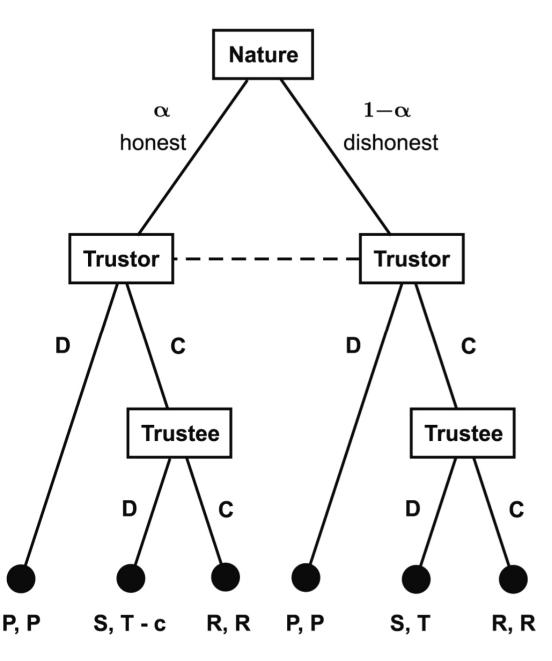

Examples of trustor (buyer) decisions over time by treatment


Signaling experiment 2 (results)

Logit: Probability of optimal decision				
	Linear		Quadratic	
	Coef	SE	Coef	SE
signal	3.684^{*}	0.477	4.298^{*}	0.544
signal noise	2.250*	0.453	2.635^{*}	0.562
time	0.021*	0.006	0.020^{*}	0.005
t^* signal	0.033^{*}	0.010	0.009	0.006
t [*] signal noise	-0.001	0.008	-0.006	0.007
time^2			-0.000	0.000
t^{2*} signal			-0.001*	0.000
t ² *signal noise			-0.000	0.000
Constant	0.460	0.341	0.640	0.384
N (dec.)	3744		3744	
N (subj.)	39		39	
Wald-Test	144.3^{*}		219.3^{*}	

* p < 0.05

Fraction of optimal decisions over time by treatment (N=3x13, T=96)


Research Perspective and Challenges

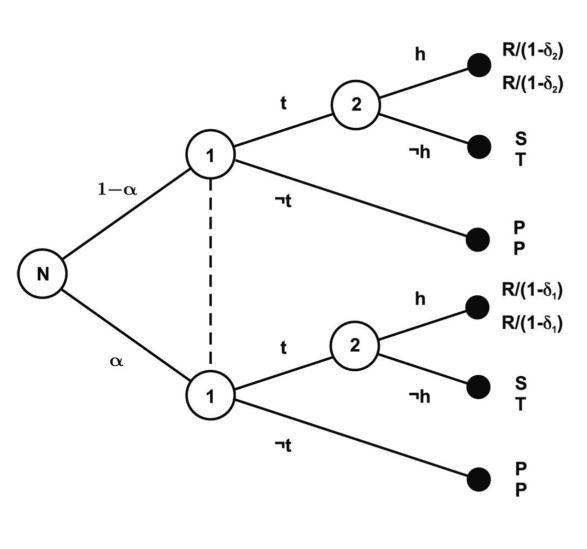
- Experiments with one-shot or short sequence signaling games are misleading. Evolution of response to signal: Learning by trial and error
- Biology: Many applications of signaling theory
- Economics: Investment in education as costly signals (Spence)
- Sociology: Much essayistic writing about "symbols", "distinctions" etc. Why not using more precise models of game theory?
- Signaling theory may account for "puzzling" phenomena not easily explainable by other approaches (inefficient norms, "voting paradox", readiness to engage in discrimination ...)
- Policy issue: Signaling furthers cooperation but institutions may be more efficient and fair.
- Many interesting propositions follow from signaling theory. However, there is mainly anecdotic evidence and there are few examples of controlled experiments or field experiments.

Experimental Methods

Rare exceptions in sociology!

	Articles 05-07	Experimental Work
British J. of Soc.	75	0
ASR	126	1
AJS	111	3
AER	270	33

Rational solution Trust if $\alpha > \alpha^* = (P - S)/(R - S)$ otherwise distrust


"Coleman's threshold"

Efficiency problem if $\alpha < \alpha^*$

T > R > P > S

R > T-c

Trust game with incomplete information

- Trustor (Player 1), Trustee (Player 2)
- t: trust,
 ¬t: do not trust
- h: honor trust,
 ¬h: do not honor
- α: Probability that trustee is patient
- δ₁: discount factor patient type A, R/(1-δ₁) > T > P
- δ₂: discount factor impatient type B, T > R/(1-δ₂) > P

Reminder: If α is less than the threshold, zero cooperation will emerge. (P > $\alpha R/(1-\delta_1) + (1-\alpha)S$)

Solution: Efficiency gains by signalling if a separating equilibrium exists.

Trust game with signals of trustworthiness

- Two types of trustees: patient (A) and impatient (B)
- Discount factor patient type: δ_1 ; discount factor impatient type: δ_2 , such that $\delta_1 > \delta_2$.
- Patient trustee interested in repeated games: $R/(1-\delta_1) > T$
- Impatient trustee abuses trust in first game: $R/(1-\delta_2) < T$
- An interaction ends, if trustor does not trust (¬t) or trustee abuses trust (¬h).

Experimental design

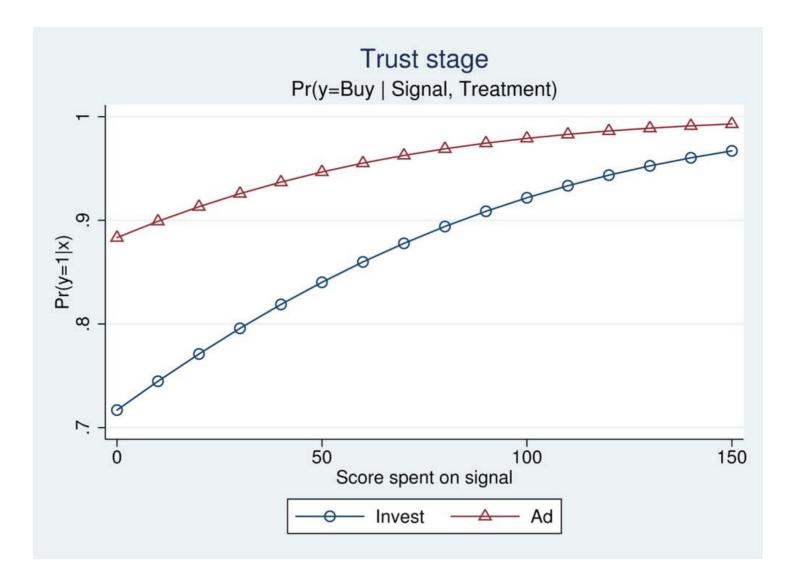
- 17 sessions à 10 subjects conducted in Nizhniy and Zurich
- 3 conditions: no signal, signal invest, signal advertise
- 5 buyers and 5 sellers play in 15 independent interactions
- with seller's payoffs P=0, R=90, T=165 and buyer's payoff P=0, R=75, S= -120.
- 5 interactions repeated, 10 interactions one-shot trust game (α=1/3 is common knowledge)
- Only sellers know whether repeated or one-shot
- Sellers don't know exact number of games if repeated (discount factor: patient type: $\delta = 2/3$)
- Seller can spend between 0 and 175 points on signal
- Buyer gets informed about points seller has spent on signal
- Interaction ends if buyer doesn't buy or seller doesn't ship
- Instruction, Quiz, test run, experiment, questionnaire, money

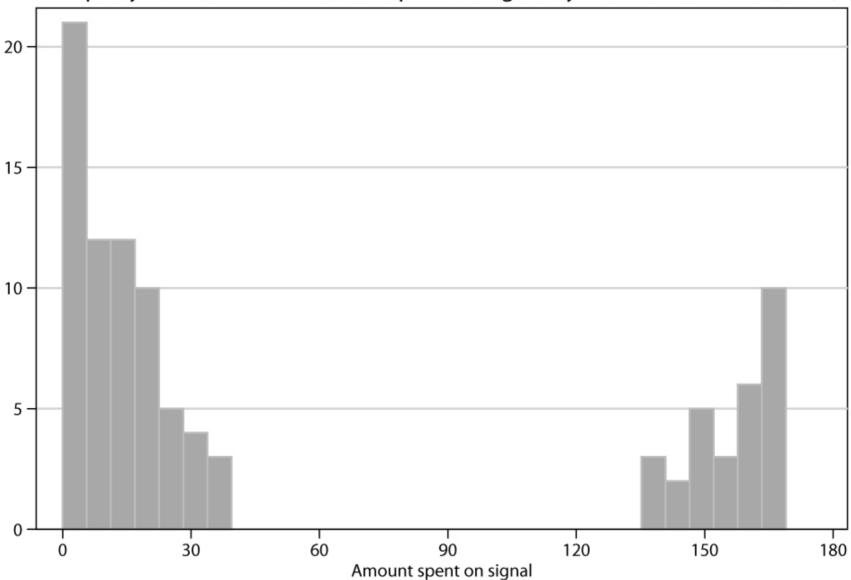
Experimental design

	Treatment					
	Nizhniy			Zurich		
	no signal	signal invest	no signal	signal invest	signal ad^3	
Interaction	(3 sessions)	(5 sessions)	(3 sessions)	(3 sessions)	(3 sessions)	
one-shot $(10/15 \text{ rounds})$	150	250	150	150	132	
repeated $(5/15 \text{ rounds})$	75	125	75	75	66	
	225	375	225	225	198	

Table 1: Number of interactions by treatment and interaction type. In each session 10 subjects played either in the role of a buyer or seller. Subjects played 15 rounds with alternating partners. One third of the interactions consisted of repeated games.

Experimental design


Testrunde 2 von 2 Sie sind ein Verkäufer und werden mit demselben Käufer etwa 3 mal ein Geschäft machen können.	Ihr Guthaben in dieser Interaktion beträgt: 175 Punkte Interaktion Testrunde 2 von 2	
Bevor sich der Käufer entscheidet, ob er mit Ihnen ein Geschäft machen will, haben Sie die Möglichkeit, in ein Signal an den Käufer zu investieren. Sie können einen Betrag zwischen 0 und 175 Punkten in das Signal investieren und das Signal an den Käufer senden. Die investierte Punktzahl wird Ihnen von Ihrem Guthaben abgezogen. Ihre Investition:	Sie sind ein Käufer . Der Verkäufer hat 60 von 175 Punkten in ein Signal an Sie investiert. Sie können sich jetzt entscheiden, ob Sie mit diesem Verkäufer ein Geschäft machen möchten oder nicht.	Ihr Guthaben in dieser Interaktion beträgt: 175 Punkte Nicht kaufen 0, 0 liefern 75, 90 -120, 165


Results: signalling stage

	Nizhniy		Zurich	
	M1	M2	M1	M2
Repeated	13.408**	14.021**	22.717***	21.984***
	(4.551)	(4.457)	(3.765)	(3.792)
Ad			-26.557**	-26.428**
			(8.878)	(8.857)
Round		-0.292		0.353
		(0.298)		(0.357)
Constant	38.192***	40.322***	43.054***	40.473***
	(4.107)	(5.259)	(6.363)	(5.706)
R^2	0.049	0.049	0.261	0.262
Ν	375	375	423	423

Table 2: OLS-regression with points spent on signal as dependent variable. Coefficient estimates and adjusted standard errors in parentheses. Two-sided t-test, * p < 0.05, ** p < 0.01, *** p < 0.001.

Results: trust stage

Frequncy distribution of amount spent on signal by simulated trustee (seller)