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Introduction

Belief Propagation: algorithm to compute approximate marginal probabilities (P(x;)
and P(x;, x;)) for probability distributions P(x1, ..., xn) over several random variables

{z;}1<i<n-

e aka: Sum-Product algorithm, Loopy BP

e close ties with: Bethe approximation, Cavity method (in Replica-Symmetric setting),
Max-Product algorithm, Density Evolution

Question: When does BP give good approximations?
Too difficult for now. . .

Easier question: When does BP give any approximation?

e \Worst-case analysis
e Average-case analysis

This work: derive a novel family of sufficient conditions for BP convergence, parameterized
by norms on R™.



Graphical model, exact probability distribution

e G = (V, B) : undirected labelled graph;

o V ={1,..., N} : vertex set;

e BC {(i,7)|1 <i<j <N} edge set;

e N,={j€eV:(ij) € Bor (ji) € B} : setof neighbours of i

Probability distribution over N discrete random variables {z;};" ,

P(z) = = H Vij(mi, ;) || i)

(zg)EB eV

with Z a normalization constant. Example: equilibrium distribution of Ising models:

P(x) = —exp ( Z Jijxix; —|—Z QZEZ)

(i,j)eB eV



Belief Propagation

Goal: to calculate approximate single-node marginals P(x;) and pairwise marginals
P(xz;,x;) for (i) € B. Exact results if G is a tree.

The BP algorithm consists of the iterative updating of a set of messages p;;, for 5 € N;:

:ugz(%) X Z Yij (i, ©j)¥;(x;) H poiei (5)-

keEN,; \4

When the messages have converged to some fixed point ng, the approximate marginal
distributions {b; };cv and {b;; } ;)< (called beliefs) are calculated by

P(x;) = bi(z;) o< i) [ pai(ea),

kZENi
P(xi, ;) = bij(xi, 7;) o< ij(@i, m) i) () | ][] ws(o) || D
kENZ\j kENJ\’L

Note that these approximate marginal distributions are normalized (by definition) and
consistent, i.e. > bij(xi, ;) = bi(z;).
J



BP for binary variables

For binary variables (x; = +1), the general probability distribution can be written as

1
P(x) = —ex Jii ;X 0;x;
(1) =Zow| >, Jywie;+ )
(i,j)€EB eV
Natural parameterization of the messages:

tanh Vij = ,Ll,ij(CCj = 1) — ,uz-j(:nj = —1)

since this renders the BP equations in a particularly simple form:

tanh(u}i) = tanh(J;;) tanh (Qj + Z Vk:j)

kENJ\Z



Norms and contractions

Definition 1. A function ||-|| : R™ — [0, co) is @ norm on R™ iff
o ||z|| =0 < x=0forallz € R™;
o |[Az| = |A| ||z|| forallz € R, A € R

o [z +yll < =l + [lyll forallz,y e R™.

A norm |[|-|| on R™ induces a norm on the vector space of linear mappings R™ — R™
(which can be identified with the space of m x m-dimensional matrices, and hence can
be identified with a matrix norm) by the following definition:

|A] = sup | Az]| for A : R™ — R™ linear
zER™, ||z =1

Euclidean norm |z|ly == /D,; 2 |All, = /maxo(ATA)
Supremum norm T := sup,; |x; A = max; > . |A;;
cxamples: P |2l := sup; | 1Al > 144]
1-norm [zl == 22, |zl |All; = max; ), | Ayl

1
p-norm, p € [1,00) |zl = (X, |z:")"? ?



Lemma 1. ['‘Mean Value Theorem”  Let ||-|| be a norm on R™. Let f be a continuous
mapping into R™ of a neighbourhood of a segment S joining two points xq, o + t of R™.
If f is differentiable at every point of .S (with derivative D f(x) at x € S), then

[f(zo+ 1) — fzo)|l < [[t]] - sup [[Df(xo+ &)
0<¢<1
Lemma 2. [Contracting Mapping Principle] Let f : X — X be a contraction of a

complete metric space (X, d), i.e.

EIKE(O,I) Va:,yEX : d(f(ﬂ?), f(y)) S Kd(ilj, y)

Then f has a unique fixed point z,, € X and for any x¢y € X, the sequence n +— x,, :=
f(x,—1) converges to this fixed point.

Theorem 1. Let ||-|| be anormon R™. Let f : R™ — R™. If

Fxe)Veerm : [[(Df)(@)|| < K

then f has a unique fixed point ., € R"™. For any initial value xo € R™, the sequence
xo, f(x0), f*(x0), ... converges (exponentially fast) to z .

Proof. The uniform bound on D f in combination with Lemma 1 implies that f is a
contraction on the complete metric space (d,R"™), where d is the metric induced by the
norm, i.e. d(z,y) := ||z — yl|| . Now apply the Contracting Mapping Principle. O



Example: 1-norm for binary variables

Corollary 1.  For any initial value of the messages, BP converges to a unique fixed point
if

max max E tanh | J;| < 1.
lev kENl
iGNl\k

Proof. The derivative matrix of the BP update equations

l/;.z. = tanh_l ( tanh(J,-j) tanh (93 —+ Z I/]ﬁ))

kEN]\’L
IS given by:
8Vgl'i 1 — tanhQ(Qj + ZteNj\i ’/tj)
_ > tanh(J;;)d;:1n.\:(k)
OV 1 — tanh®(v/, ’

The fraction is always smaller than 1, hence, taking the 1-norm:

o'

gt

IDF)y = max Y | 5

kl

= max max E tanh | J;|
€V kEN|
iENl\k




Example: weighted 1-norm

We can do better by taking another norm.

Example: “weighted” 1-norm and its induced matrix norm given by

Wy
il =) w; |zl ; Al w = mgxzi IAz-jIE

i J
with w4, . . ., w,, > 0 weights that can be chosen optimally.

This always improves the bound (except if the J’s are all equal), especially for sparse
graphs.

For example, for a spin-glass Ising model on a 2D rectangular (periodic) lattice with
Gaussian interactions J;; ~ N (0, J), we find an improvement of the critical J of 25%
on average.



Beyond the binary case

Switch notation:
Vi) = Yig(Ti, ;) — 102;75 log ij(x;) — A2
For convenience, assume (WLOG): VY yes Vs @ >, 07, =

ad ¢

The BP update equation becomes in this new notation:

SR DPETRN 4 y . y
exp(\') = - where  hy =) || expAy
ZB B teN;\i

Now, differentiating with respect to A%':

a)\ji/ ’I,D;] hij hij
o = dstgi(k) ( ﬁijﬁhij - Bhij
3 2. p%ashs  2phy



We can (try to) bound this derivative matrix with any norm. Here we take the 1-norm:

O

Jio

8>\m

1] 1.9 %]
Yoy Ny

Z] 1] J
ds%ashs  dsh
wz hzl hzﬁl
= mf“xﬁ?\,}l{max Z Z ZBW hzl - Zghg

ZENl\k‘ (e

= H]%%X 5]l1N \z(k)

1jo

’l?Dil h’il hil
< max max maXZ —— — Bil
PR ST Sl T n

iGNl\k’

= T ken
Lienp\k 120

< max max sup maxz ‘ Zl h — hg

IRl =1

i1

— max max D ("

| keN; (%)
ZENl\k

where we defined

Yashs
DY) = sup  max —h
2 h>0,|[hly =1 P 2@:‘

> Garhs



We can conclude that BP converges to a unique fixed point if

Binary case: D(v") = tanh |J;;]|.

Compare with recent bound by Ihler et al,ﬂ which is in our notation:

il
maxmax ), E(y7) <1
’LENl\k
with 2( ) y
d°(y) — 1 SUp,, g Yap
E() 1= — d* () = —F
d (QP) + 1 lnfoz,ﬁ waﬁ

1Message Errors in Belief Propagation, Ihler, Fisher, Willsky, to appear in NIPS 2004
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Comparison of D(vy) and E(v))
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For a sample of 100 random 3 x 3 matrices 1, with i.i.d. entries uniformly distributed over (0, 1). For the
majority of the cases, D (1)) is lower than d?(z)).
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Beyond norms

Idea: look at n iterations of BP for n > 1.

Using similar tools as before, we can give a condition for which BP™ is a contraction (and
hence converges to a unique fixed point).

Problem: this does not imply convergence of BP (because of limit cycles).

Idea: if both BP™ and BP™ are contractions for two different primes n and m, this does
imply convergence of BP.

This turns out to work and yields
Theorem 2. BP converges to a unique fixed point if
loc(A)| < 1

where
Ajj = tanh [ Ji;] 641y, (k)

13



Binary case: comparison of various bounds
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Periodic rectangular 2D lattice of size 5 x 5. The J;; are i.i.d. ~ N (Jg, J).
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A very rough average-case analysis

Consider the binary case with random i.i.d. interactions J;; with (.J;;) = 0 and (J%) = J°
For J small, BP converges with high probability. A very rough estimate of the critical value

of J where BP stops converging is

1
Jo ~ —.
Vd

with d = < >, | N,| is the average degree of the graph. Note that this coincides with the
paramagnetic—spin-glass phase transition.

On the other hand, if we take al interactions J;; = Jy equal and positive, the unique BP
fixed point found for small J, undergoes a pitchfork bifurcation at some critical Jy.. A very
rough estimate of this critical value is

Jou ~ —.
0 g

Note that this coincides with the paramagnetic—ferromagnetic phase transition.

Since the conditions for BP convergence are insensitive to the sign of the J;;’s, it is unlikely
that these bounds will be able to bridge the gap between J. and J..

15



Conclusions

e Framework to derive BP convergence conditions

e Elegant and simple derivations (no need for theory of Gibbs measures)
e Deepens understanding of BP algorithm

e Possibilities for improvement within the framework

Possible future work:

e The optimal norm?
e The optimal (sharp) bound?
e Extension to higher order interactions
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