Bounds and estimates for BP convergence

Joris Mooij, Bert Kappen
\{j.mooij|b.kappen\}@science.ru.nl
SNN, Radboud University Nijmegen, The Netherlands

January 2005

Introduction

Belief Propagation: algorithm to compute approximate marginal probabilities ($P\left(x_{i}\right)$ and $\left.P\left(x_{i}, x_{j}\right)\right)$ for probability distributions $P\left(x_{1}, \ldots, x_{N}\right)$ over several random variables $\left\{x_{i}\right\}_{1 \leq i \leq N}$.

- aka: Sum-Product algorithm, Loopy BP
- close ties with: Bethe approximation, Cavity method (in Replica-Symmetric setting), Max-Product algorithm, Density Evolution

Question: When does BP give good approximations?
Too difficult for now. . .
Easier question: When does BP give any approximation?

- Worst-case analysis
- Average-case analysis

This work: derive a novel family of sufficient conditions for BP convergence, parameterized by norms on \mathbb{R}^{m}.

Graphical model, exact probability distribution

- $G=(V, B)$: undirected labelled graph;
- $V=\{1, \ldots, N\}$: vertex set;
- $B \subseteq\{(i, j) \mid 1 \leq i<j \leq N\}$: edge set;
- $N_{i}=\{j \in V:(i j) \in B$ or $(j i) \in B\}$: set of neighbours of i

Probability distribution over N discrete random variables $\left\{x_{i}\right\}_{i=1}^{N}$

$$
P(x)=\frac{1}{Z} \prod_{(i j) \in B} \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{i \in V} \psi_{i}\left(x_{i}\right)
$$

with Z a normalization constant. Example: equilibrium distribution of Ising models:

$$
P(x)=\frac{1}{Z} \exp \left(\sum_{(i, j) \in B} J_{i j} x_{i} x_{j}+\sum_{i \in V} \theta_{i} x_{i}\right)
$$

Belief Propagation

Goal: to calculate approximate single-node marginals $P\left(x_{i}\right)$ and pairwise marginals $P\left(x_{i}, x_{j}\right)$ for $(i j) \in B$. Exact results if G is a tree.

The BP algorithm consists of the iterative updating of a set of messages $\mu_{i j}$, for $j \in N_{i}$:

$$
\mu_{j i}^{\prime}\left(x_{i}\right) \propto \sum_{x_{j}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \in N_{j} \backslash i} \mu_{k j}\left(x_{j}\right) .
$$

When the messages have converged to some fixed point $\mu_{i j}^{0}$, the approximate marginal distributions $\left\{b_{i}\right\}_{i \in V}$ and $\left\{b_{i j}\right\}_{(i j) \in B}$ (called beliefs) are calculated by

$$
\begin{aligned}
P\left(x_{i}\right) & \approx b_{i}\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{k \in N_{i}} \mu_{k i}^{0}\left(x_{i}\right) \\
P\left(x_{i}, x_{j}\right) & \approx b_{i j}\left(x_{i}, x_{j}\right) \propto \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{i}\left(x_{i}\right) \psi_{j}\left(x_{j}\right)\left(\prod_{k \in N_{i} \backslash j} \mu_{k i}^{0}\left(x_{i}\right)\right)\left(\prod_{k \in N_{j} \backslash i} \mu_{k j}^{0}\left(x_{j}\right)\right)
\end{aligned}
$$

Note that these approximate marginal distributions are normalized (by definition) and consistent, i.e. $\sum_{x_{j}} b_{i j}\left(x_{i}, x_{j}\right)=b_{i}\left(x_{i}\right)$.

BP for binary variables

For binary variables ($x_{i}= \pm 1$), the general probability distribution can be written as

$$
P(x)=\frac{1}{Z} \exp \left(\sum_{(i, j) \in B} J_{i j} x_{i} x_{j}+\sum_{i \in V} \theta_{i} x_{i}\right)
$$

Natural parameterization of the messages:

$$
\tanh \nu_{i j}=\mu_{i j}\left(x_{j}=1\right)-\mu_{i j}\left(x_{j}=-1\right)
$$

since this renders the BP equations in a particularly simple form:

$$
\tanh \left(\nu_{j i}^{\prime}\right)=\tanh \left(J_{i j}\right) \tanh \left(\theta_{j}+\sum_{k \in N_{j} \backslash i} \nu_{k j}\right)
$$

Norms and contractions

Definition 1. A function $\|\cdot\|: \mathbb{R}^{m} \rightarrow[0, \infty)$ is a norm on \mathbb{R}^{m} iff

- $\|x\|=0 \Longleftrightarrow x=0$ for all $x \in \mathbb{R}^{m}$;
- $\|\lambda x\|=|\lambda|\|x\|$ for all $x \in \mathbb{R}^{m}, \lambda \in \mathbb{R}$
- $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in \mathbb{R}^{m}$.

A norm $\|\cdot\|$ on \mathbb{R}^{m} induces a norm on the vector space of linear mappings $\mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ (which can be identified with the space of $m \times m$-dimensional matrices, and hence can be identified with a matrix norm) by the following definition:

$$
\|A\|:=\sup _{x \in \mathbb{R}^{m},\|x\|=1}\|A x\| \quad \text { for } A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} \text { linear }
$$

Examples:

Euclidean norm	$\\|x\\|_{2}:=\sqrt{\sum_{i} x_{i}{ }^{2}}$	$\\|A\\|_{2}=\sqrt{\max ^{\sigma\left(A^{T} A\right)}}$
Supremum norm	$\\|x\\|_{\infty}:=\sup _{i}\left\|x_{i}\right\|$	$\\|A\\|_{\infty}=\max _{i} \sum_{j}\left\|A_{i j}\right\|$
1-norm	$\\|x\\|_{1}:=\sum_{i}\left\|x_{i}\right\|$	$\\|A\\|_{1}=\max _{j} \sum_{i}\left\|A_{i j}\right\|$
p-norm, $p \in[1, \infty)$	$\\|x\\|_{p}:=\left(\sum_{i}\left\|x_{i}\right\|^{p}\right)^{1 / p}$	$?$

Lemma 1. ["Mean Value Theorem"] Let $\|\cdot\|$ be a norm on \mathbb{R}^{m}. Let f be a continuous mapping into \mathbb{R}^{m} of a neighbourhood of a segment S joining two points $x_{0}, x_{0}+t$ of \mathbb{R}^{m}. If f is differentiable at every point of S (with derivative $D f(x)$ at $x \in S$), then

$$
\left\|f\left(x_{0}+t\right)-f\left(x_{0}\right)\right\| \leq\|t\| \cdot \sup _{0 \leq \xi \leq 1}\left\|D f\left(x_{0}+\xi t\right)\right\|
$$

Lemma 2. [Contracting Mapping Principle] Let $f: X \rightarrow X$ be a contraction of a complete metric space (X, d), i.e.

$$
\exists_{K \in(0,1)} \forall_{x, y \in X}: \quad d(f(x), f(y)) \leq K d(x, y)
$$

Then f has a unique fixed point $x_{\infty} \in X$ and for any $x_{0} \in X$, the sequence $n \mapsto x_{n}:=$ $f\left(x_{n-1}\right)$ converges to this fixed point.

Theorem 1. Let $\|\cdot\|$ be a norm on \mathbb{R}^{m}. Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$. If

$$
\exists_{K \in(0,1)} \forall_{x \in \mathbb{R}^{m}}:\|(D f)(x)\| \leq K
$$

then f has a unique fixed point $x_{\infty} \in \mathbb{R}^{m}$. For any initial value $x_{0} \in \mathbb{R}^{m}$, the sequence $x_{0}, f\left(x_{0}\right), f^{2}\left(x_{0}\right), \ldots$ converges (exponentially fast) to x_{∞}.

Proof. The uniform bound on $D f$ in combination with Lemma 1 implies that f is a contraction on the complete metric space $\left(d, \mathbb{R}^{m}\right)$, where d is the metric induced by the norm, i.e. $d(x, y):=\|x-y\|$. Now apply the Contracting Mapping Principle.

Example: 1-norm for binary variables

Corollary 1. For any initial value of the messages, $B P$ converges to a unique fixed point if

$$
\max _{l \in V} \max _{k \in N_{l}} \sum_{i \in N_{l} \backslash k} \tanh \left|J_{i l}\right|<1 .
$$

Proof. The derivative matrix of the BP update equations

$$
\nu_{j i}^{\prime}=\tanh ^{-1}\left(\tanh \left(J_{i j}\right) \tanh \left(\theta_{j}+\sum_{k \in N_{j} \backslash i} \nu_{k j}\right)\right)
$$

is given by:

$$
\frac{\partial \nu_{j i}^{\prime}}{\partial \nu_{k l}}=\frac{1-\tanh ^{2}\left(\theta_{j}+\sum_{t \in N_{j} \backslash i} \nu_{t j}\right)}{1-\tanh ^{2}\left(\nu_{j i}^{\prime}\right)} \tanh \left(J_{i j}\right) \delta_{j, l} \mathbf{1}_{N_{j} \backslash i}(k)
$$

The fraction is always smaller than 1 , hence, taking the 1 -norm:

$$
\|D f(\nu)\|_{1}=\max _{k l} \sum_{i j}\left|\frac{\partial \nu_{j i}^{\prime}}{\partial \nu_{k l}}\right|=\max _{l \in V} \max _{k \in N_{l}} \sum_{i \in N_{l} \backslash k} \tanh \left|J_{i l}\right|
$$

Example: weighted 1-norm

We can do better by taking another norm.
Example: "weighted" 1-norm and its induced matrix norm given by

$$
\|x\|_{1, W}:=\sum_{i} w_{i}\left|x_{i}\right| ; \quad\|A\|_{1, W}=\max _{j} \sum_{i}\left|A_{i j}\right| \frac{w_{i}}{w_{j}}
$$

with $w_{1}, \ldots, w_{m}>0$ weights that can be chosen optimally.
This always improves the bound (except if the J's are all equal), especially for sparse graphs.

For example, for a spin-glass Ising model on a 2 D rectangular (periodic) lattice with Gaussian interactions $J_{i j} \sim \mathcal{N}(0, J)$, we find an improvement of the critical J of 25% on average.

Beyond the binary case

Switch notation:

$$
\psi_{i}\left(x_{i}\right) \mapsto \psi_{\alpha}^{i} \quad \psi_{i, j}\left(x_{i}, x_{j}\right) \mapsto \psi_{\alpha \beta}^{i j} \quad \log \mu_{i j}\left(x_{j}\right) \mapsto \lambda_{\alpha}^{i j}
$$

For convenience, assume (WLOG): $\quad \forall_{(i, j) \in B} \forall_{\beta}: \quad \sum_{\alpha} \psi_{\alpha \beta}^{i j}=1$.

The BP update equation becomes in this new notation:

$$
\exp \left(\lambda_{\alpha}^{j i \prime}\right)=\frac{\sum_{\beta} \psi_{\alpha \beta}^{i j} h_{\beta}^{i j}}{\sum_{\beta} h_{\beta}^{i j}} \quad \text { where } \quad h_{\beta}^{i j}:=\psi_{\beta}^{j} \prod_{t \in N_{j} \backslash i} \exp \lambda_{\beta}^{t j}
$$

Now, differentiating with respect to $\lambda_{\beta}^{k l}$:

$$
\frac{\partial \lambda_{\alpha}^{j i \prime}}{\partial \lambda_{\beta}^{k l}}=\delta_{j l} \mathbf{1}_{N_{j} \backslash i}(k)\left(\frac{\psi_{\alpha \beta}^{i j} h_{\beta}^{i j}}{\sum_{\beta} \psi_{\alpha \beta}^{i j} h_{\beta}^{i j}}-\frac{h_{\beta}^{i j}}{\sum_{\beta} h_{\beta}^{i j}}\right)
$$

We can (try to) bound this derivative matrix with any norm. Here we take the 1-norm:

$$
\begin{aligned}
\left\|\frac{\partial \lambda_{j i \alpha}^{\prime}}{\partial \lambda_{k l \beta}}\right\|_{1} & =\max _{k l \beta} \sum_{i j \alpha} \delta_{j l} \mathbf{1}_{N_{j} \backslash i}(k)\left|\frac{\psi_{\alpha \beta}^{i j} h_{\beta}^{i j}}{\sum_{\beta} \psi_{\alpha \beta}^{i j} h_{\beta}^{i j}}-\frac{h_{\beta}^{i j}}{\sum_{\beta} h_{\beta}^{i j}}\right| \\
& =\max _{l} \max _{k \in N_{l}} \max _{\beta} \sum_{i \in N_{l} \backslash k} \sum_{\alpha}\left|\frac{\psi_{\alpha \beta}^{i l} h_{\beta}^{i l}}{\sum_{\beta} \psi_{\alpha \beta}^{i l} h_{\beta}^{i l}}-\frac{h_{\beta}^{i l}}{\sum_{\beta} h_{\beta}^{i l}}\right| \\
& \leq \max _{l} \max _{k \in N_{l}} \sum_{i \in N_{l} \backslash k} \max _{\beta} \sum_{\alpha}\left|\frac{\psi_{\alpha \beta}^{i l} h_{\beta}^{i l}}{\sum_{\beta} \psi_{\alpha \beta}^{i l} h_{\beta}^{i l}}-\frac{h_{\beta}^{i l}}{\sum_{\beta} h_{\beta}^{i l}}\right| \\
& \leq \max _{l} \max _{k \in N_{l}} \sum_{i \in N_{l} \backslash k} \sup _{h \geq 0}^{\|h\|_{1}=1} \max _{\beta} \sum_{\alpha}\left|\frac{\psi_{\alpha \beta}^{i l} h_{\beta}}{\sum_{\beta} \psi_{\alpha \beta}^{i l} h_{\beta}}-h_{\beta}\right| \\
& =\max _{l} \max _{k \in N_{l}} \sum_{i \in N_{l} \backslash k} D\left(\psi^{i l}\right)
\end{aligned}
$$

where we defined

$$
D(\psi):=\sup _{h \geq 0,\|h\|_{1}=1} \max _{\beta} \sum_{\alpha}\left|\frac{\psi_{\alpha \beta} h_{\beta}}{\sum_{\gamma} \psi_{\alpha \gamma} h_{\gamma}}-h_{\beta}\right|
$$

We can conclude that BP converges to a unique fixed point if

$$
\max _{l \in V} \max _{k \in N_{l}} \sum_{i \in N_{l} \backslash k} D\left(\psi^{i l}\right)<1
$$

Binary case: $D\left(\psi^{i j}\right)=\tanh \left|J_{i j}\right|$.
Compare with recent bound by Ihler et al, $]$ which is in our notation:

$$
\max _{l \in V} \max _{k \in N_{l}} \sum_{i \in N_{l} \backslash k} E\left(\psi^{i l}\right)<1
$$

with

$$
E(\psi):=\frac{d^{2}(\psi)-1}{d^{2}(\psi)+1} \quad d^{2}(\psi):=\frac{\sup _{\alpha, \beta} \psi_{\alpha \beta}}{\inf _{\alpha, \beta} \psi_{\alpha \beta}}
$$

[^0]
Comparison of $D(\psi)$ and $E(\psi)$

For a sample of 100 random 3×3 matrices ψ, with i.i.d. entries uniformly distributed over $(0,1)$. For the majority of the cases, $D(\psi)$ is lower than $d^{2}(\psi)$.

Beyond norms

Idea: look at n iterations of BP for $n>1$.
Using similar tools as before, we can give a condition for which BP^{n} is a contraction (and hence converges to a unique fixed point).

Problem: this does not imply convergence of BP (because of limit cycles).
Idea: if both BP^{n} and BP^{m} are contractions for two different primes n and m, this does imply convergence of BP .

This turns out to work and yields
Theorem 2. BP converges to a unique fixed point if

$$
|\sigma(A)|<1
$$

where

$$
A_{i j, k l}=\tanh \left|J_{i j}\right| \delta_{i l} \mathbf{1}_{N_{i} \backslash j}(k)
$$

Binary case: comparison of various bounds

Periodic rectangular 2D lattice of size 5×5. The $J_{i j}$ are i.i.d. $\sim \mathcal{N}\left(J_{0}, J\right)$.

A very rough average-case analysis

Consider the binary case with random i.i.d. interactions $J_{i j}$ with $\left\langle J_{i j}\right\rangle=0$ and $\left\langle J_{i j}^{2}\right\rangle=J^{2}$. For J small, BP converges with high probability. A very rough estimate of the critical value of J where BP stops converging is

$$
J_{c} \sim \frac{1}{\sqrt{d}} .
$$

with $d=\frac{1}{N} \sum_{i}\left|N_{i}\right|$ is the average degree of the graph. Note that this coincides with the paramagnetic-spin-glass phase transition.

On the other hand, if we take al interactions $J_{i j}=J_{0}$ equal and positive, the unique BP fixed point found for small J_{0} undergoes a pitchfork bifurcation at some critical $J_{0 c}$. A very rough estimate of this critical value is

$$
J_{0 c} \sim \frac{1}{d} .
$$

Note that this coincides with the paramagnetic-ferromagnetic phase transition.
Since the conditions for BP convergence are insensitive to the sign of the $J_{i j}$'s, it is unlikely that these bounds will be able to bridge the gap between J_{c} and $J_{0 c}$.

Conclusions

- Framework to derive BP convergence conditions
- Elegant and simple derivations (no need for theory of Gibbs measures)
- Deepens understanding of BP algorithm
- Possibilities for improvement within the framework

Possible future work:

- The optimal norm?
- The optimal (sharp) bound?
- Extension to higher order interactions

[^0]: ${ }^{1}$ Message Errors in Belief Propagation, Ihler, Fisher, Willsky, to appear in NIPS 2004

