18.03 Problem Set 1 Solutions

0. (a) $\frac{d v}{d t}=9-v^{2}$. Separate variables: $\frac{d v}{9-v^{2}}=d t$. Integrate this using partial fractions:

$$
\frac{1}{9-v^{2}}=\frac{1}{6}\left(\frac{1}{3-v}+\frac{1}{3+v}\right)
$$

$$
\text { so }-\ln |3-v|+\ln |3+v|=6 t+c \text { or }
$$

$$
\ln \left|\frac{3+v}{3-v}\right|=6 t+c
$$

This is an implicit solution, but we can go ahead and solve for v. Exponentiate and eliminate the absolute values (and return the "missing solution"):

$$
\begin{equation*}
\frac{3+v}{3-v}=C e^{6 t} \tag{1}
\end{equation*}
$$

Multiply through by the denominator and collect terms involving $v:\left(1+C e^{6 t}\right) v=$ $3\left(C e^{6 t}-1\right): v=3 \frac{C e^{6 t}-1}{C e^{6 t}+1}$. This is more transparent when written

$$
v=3 \frac{C-e^{-6 t}}{C+e^{-6 t}}
$$

(b) From (1) with $v=0=t, 1=C$: so the particular solution is

$$
v=3 \frac{1-e^{-6 t}}{1+e^{-6 t}}
$$

(c) Yes: as $t \rightarrow \infty, v \rightarrow 3$, no matter what C is.
(d) When $v<0$ the equation is asserting that friction is decreasing the velocity even further, i.e., increasing the speed.

1. (a)

(b) By clicking on various points on the y axis and watching the fate of the solutions, $.66<y_{0}<.68$.
(c) Actually, all solutions with $y(0)>0$ always lie above the graph of a certain function $f(x)=$ for $x>0$. Of course the best function wtih this property is the solution of the differential equation itself satisfying $y(0)=0$. More concretely but less precisely, the function $f(x)=-x$ will serve: it is on the nullcline, and its slope is negative, so solutions which cross it must cross it "from below." Thus solutions which begin (at $x=0$) above it must stay above it.
(d) It is a general fact that critical points of solutions lie on the null-cline: the solution has zero derivative at a critical point, and the derivative equals the slope of the direction field. The null-cline of this equation is $y= \pm x$. From the applet it is clear that the critical points are maxima for $x>0$ and minima for $x<0$. This can be checked analytically too: The second derivative of a solution can be read off by differentiating the equation $y^{\prime \prime}=2 y y^{\prime}-2 x$. This can be re-expressed entirely in terms of x and y, to find an equation for the locus of points of inflections of solutions, but we are interested in the sign of the second derivative along the null-cline. There, $y^{\prime}=0$, so $y^{\prime \prime}=-2 x$. This is negative just when $x>0$, so that is where you get maxima.
2. (F 10 Feb) (a) We compute y_{k} for a few small values of k, for n fixed but arbitrary. Here's the table.

k	x_{k}	y_{k}	$A_{k}=y_{k}$	$h A_{k}$
0	0	1	1	h
1	h	$1+h$	$1+h$	$h(1+h)$
2	$2 h$	$(1+h)+h(1+h)=(1+h)^{2}$	$(1+h)^{2}$	$h(1+h)^{2}$
3	$3 h$	$(1+h)^{2}+h(1+h)^{2}=(1+h)^{3}$	$(1+h)^{3}$	$h(1+h)^{3}$
\cdot	\cdots	\cdots	\cdots	\cdots

It's fair to conclude that $y_{k}=(1+h)^{k}$ for all k, so in particular $y_{n}=(1+h)^{n}$. Since $h=1 / n$, this is $(1+(1 / n))^{n}$. [A standard calculus exercise shows that $\lim _{n \rightarrow \infty}(1+(1 / n))^{n}=e$.]
(b)

h	$y_{\text {est }}(1)$	Error	Error $/ h$	Error $/ h^{2}$
1	1.00	.58	.58	.58
.5	1.24	.34	.68	1.36
.25	1.39	.19	.76	3.04
.125	1.48	.10	.80	6.40
Actual	1.58			

The quotients Error/ h are not exactly constant, but they do seem to be convering (to .8??) and they are much closer to constant than the quotients by h^{2}. You can't expect the error term to behave too regularly, after all-if it did, you could use that regularity to compute the actual answer exactly!
(c) the actual is larger than the estimates. The direction field is increasing in this range.
(d) Separate variables: $d y / y=\sin t d t$ so $\ln |y|=-\cos t+c$ and $y=C e^{-\cos t}$. $y(0)=1$ forces $C=e$ so $y=e \cdot e^{-\cos t}$, or $y=e^{1-\cos t}$. When $t=1$ a calculator gives 1.5835952 .
3. (M 13 Feb) (a) Write x for the principle or loan balance. Over a short period of time, we have to add the interest on that money and subtract the payment we have made:

$$
x(t+\Delta t) \simeq x(t)+I x(t) \Delta t-q \Delta t
$$

Check units here: I is measured in years ${ }^{-1}$ and Δt in years, so the second term on the right has units of dollars. So does the third term.
Now put $x(t)$ on the left, divide by Δt, and take the limit:

$$
\frac{d x}{d t}=I x-q .
$$

(b) Separate: $\frac{d x}{I x-q}=d t, I^{-1} \ln |I x-q|=t+c, I x-q=C e^{I t}, x=I^{-1}\left(q+C e^{I t}\right)$.
(c) $x(T)=I^{-1}\left(q+C e^{I T}\right)$ so $C=-q e^{-I T}$ and $x=(q / I)\left(1-e^{I(t-T)}\right)$. Finally, $M=x(0)=(q / I)\left(1-e^{-I T}\right)$ implies that $q=\frac{M I}{1-e^{-I T}}$.
(d) A typical mortgage has $T=30$ and $I=0.05$. Estimate the monthly payments if $M=10^{5}$.
With $T=30$ and $I=0.05$ (not 0.5 - that would be usury!), we compute $I /(1-$ $\left.e^{-I T}\right) \simeq 0.06430846$. Multiply by $M=10^{5}$ to get annual payments of $q=\$ 6436.0846$, or monthly payments of $q / 12=\$ 536.34$.
Over the life of the loan you have to pay the bank $I T /\left(1-e^{-I T}\right)$ for each dollar you borrow. With $I=0.05$ and $T=30$ this comes to 1.9308254 .

