18.03 Problem Set 2 Solutions: Part I1

4. (a) x decays exponentially to zero. y rises to a maximum and then falls off exponentially to zero.
z increases monotonically and exponentially approaches the limiting value of one mole.

(b) First recall the relationship between the decay constant and the half life: e~ solves # = —lz,
and e %2 = 0.5, 80 It =In2 or [ = In2/t;. So the requested notation is well chosen: the decay
constant for Kriptonite is k£ and for Luthorium is .

Differential equations: & +Ilx = 0. y+ ky = lz. 2 = ky.

(c) With z(0) = 1, the solution is z = e~!*. Then § + ky = le~'*. This is an inhomogeneous linear

ODE. The homogeneous solution is y;, = e *t. Substitute y = e~ *u:

d

l -t _ =
c dt

(e7Mu) + ke ™ Mu = e Mu — ke Fu + ke My = e M.

Thus @ = leFte ™ = 1e*=Dt sou = (I/(k —1))e®* D 4 cand y = e Fu = (I/(k —1))e " + ce™**.
) Y

The initial condition y(0) = 0 forces ¢ = —I/(k —1), soy = (I/(k —1))(e™" — e™*). Finally,

z= kz/ydt = (kl/(k=D)(e /(1) — e ¥ /(=k)) + c. 2(0) =0givesc = 1,502 = ﬁ (le™ — ke ")+
1.

(d) If y reaches a maximum at t = t,,, say, then y(t,,) = 0. This happens when the derivatives of
the two exponentials in the formula for y cancel: le~"#m = ke=*tm . Multiply by eFtm: e(k=Dtm =k /1,
or (k—UDtym =Ink —1Inl, or t,, = (Ink —Inl)/(k —1).
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5. (a) i e 1+4. The argument is 7/4 and the magnitude is v/2 so we get
—1 —1 i
\/ieiﬂ'/4.
(b) The modulus is e and the argument is 7/3. cos(7/3) = 1/2 and sin(7/3) = v/3/2, so the real
part is /2 and the imaginary party is v/3e/2.

(c) The modulus of a fourth root of —1 must be 1, since it is a positive real number whose fourth
power is | — 1| = 1. The argument must be one quarter of an argument of —1. The argument
of —1 is only defined up to adding integer multiples of 27w, so when I take a quarter of it I get a
number which is only defined up to adding integer multiples of /2. One argument of —1 is 7, so the
arguments of the fourth roots are given by 7/4 plus integer multiples of 7/2: +7/4, £37/4. These
have rectangular descriptions: (&1 % 14)/v/2.

(d) The modulus of e+ is e?, and |1 +i| = v/2, s0 if €27 = 1 + i then e® = v/2 or a = (In2)/2.
The argument of e?*? is b, and the argument of 1 + i is 7/4. But the argument is only defined up
to adding integer multiples of 27, so b can be (8% + 1)(mw/4) for any integer k.

6. (a) e = cos(4t) +isin(4t). On the other hand, (e)* = (cost +isint)*. The imaginary part of
this power has contributions whenever the sine term is raised to an odd power: it is 4 cos® ¢tsint —
4 costsin®t.

(b) et cos(2nt) = Ree?t for z = —1 + 2mi. Ime** = e !sin(27t) has the middle graph below. The
curve in C parametrized by e*! looks like the right hand graph.

e lcos(2'pi*t) e sin(2epit) trajectory of el"1*2)t




(c) a =0, b#0: |elettDt — ¢at must be constant to get a circle, so a = 0; while the argument of
elattt takes on all values as t varies as long as b # 0.

(d) b =0, a # 0: The curve will rotate if b is not zero; and its distance from 0 won’t change if a = 0.
The only possible ray is the positive real axis.

(e) a < 0; |elatb)t] = eat converges to zero as t — oo exactly when a < 0.

(f) @ > 0 and b > 0: |e(@TP)t| = 2 is increasing exactly when a > 0, and the angle bt is increasing
exactly when b > 0.
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7. (a) f+ = Z(cos(t/?) +isin(t/2)) so w = 1/2, a = 1/2, and b = 1/2. [Another correct
i
answer is w = —1/2, a = 1/2, b = —1/2; but normally we expect w > 0 since one can always arrange
this.] By SN A, ¢ are the polar coordinates of the point in the plane with rectangular cooridinates

(a,b). So A=1/+/2 and ¢ = 7/4.
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(b) z(t + At) ~ x(t) + k(y(t) — (t))At by the same reasoning as the rootbeer cooler model in
Lecture. This leads to & + kx = ky. The system is the canal, whose characteristics are captured by
the coupling constant k. The input signal is the elevation of the ocean, y, or rather k£ times that.
The output signal is the water height in the bay, x.

(c) The period is 4, so the circular frequency w = 2w/P = 1/2. The equation we are looking at is
& + kx = k cos(wt).

(d) To answer this we have to find the periodic solution to the equation. Let’s do this by using the
complex exponential. The equation is the real part of z + kz = ¢!, By the ERF, this has solution
given by z, = ke™'/(iw + k). This function parametrizes a circle of radius k/|iw + k|. Its real part
is the periodic solution of our original equation, and it has maximal value k/|iw + k|. Setting this
equal to 1/v/2 gives w? + k? = 2k? or k = w. Now remember that w = 1/2, so k = 1/2.

We know that the amplitude of the steady state solution is A = 1/+/2. To find the phase lag ¢, we
remember that the the expression x, = A cos(wt — ¢) arises as the real part of 2, = ke'!/(iw + k) =
(1/2)e/2/(i/2 4+ 1/2) = €*/2/(1 4 i). But it’s also the real part of Ae*“*=?) so will try to write
zp = €*/2/(1 4 14) in the form Ae’@*=?). To do this, write 1/(1 +4) = (1 —i)/2 in polar form:
(1 —1)/2 = (1/v/2)e"™/4. Substituting, z, = (1/v/2)e""/1e/2 = (1/1/2)e"*/2=7/1) The result is
that A = 1/4/2 (as we know), and ¢ = m/4. This checks with the Mathlet!



