### 18.03 Problem Set 2 Solutions: Part II

4. (a) $x$ decays exponentially to zero. $y$ rises to a maximum and then falls off exponentially to zero. $z$ increases monotonically and exponentially approaches the limiting value of one mole.
(b) First recall the relationship between the decay constant and the half life: $e^{-l t}$ solves $\dot{x}=-l x$, and $e^{-l t_{L}}=0.5$, so $l t_{L}=\ln 2$ or $l=\ln 2 / t_{L}$. So the requested notation is well chosen: the decay constant for Kriptonite is $k$ and for Luthorium is $l$.
Differential equations: $\dot{x}+l x=0 . \dot{y}+k y=l x . \dot{z}=k y$.
(c) With $x(0)=1$, the solution is $x=e^{-l t}$. Then $\dot{y}+k y=l e^{-l t}$. This is an inhomogeneous linear ODE. The homogeneous solution is $y_{h}=e^{-k t}$. Substitute $y=e^{-k t} u$ :

$$
l e^{-l t}=\frac{d}{d t}\left(e^{-k t} u\right)+k e^{-k t} u=e^{-k t} \dot{u}-k e^{-k t} u+k e^{-k t} u=e^{-k t} \dot{u}
$$

Thus $\dot{u}=l e^{k t} e^{-l t}=l e^{(k-l) t}$, so $u=(l /(k-l)) e^{(k-l) t}+c$ and $y=e^{-k t} u=(l /(k-l)) e^{-l t}+c e^{-k t}$. The initial condition $y(0)=0$ forces $c=-l /(k-l)$, so $y=(l /(k-l))\left(e^{-l t}-e^{-k t}\right)$. Finally, $z=k \int y d t=(k l /(k-l))\left(e^{-l t} /(-l)-e^{-k t} /(-k)\right)+c . z(0)=0$ gives $c=1$, so $z=\frac{1}{k-l}\left(l e^{-k t}-k e^{-l t}\right)+$ 1.
(d) If $y$ reaches a maximum at $t=t_{m}$, say, then $\dot{y}\left(t_{m}\right)=0$. This happens when the derivatives of the two exponentials in the formula for $y$ cancel: $l e^{-l t_{m}}=k e^{-k t_{m}}$. Multiply by $e^{k t_{m}}: e^{(k-l) t_{m}}=k / l$, or $(k-l) t_{m}=\ln k-\ln l$, or $t_{m}=(\ln k-\ln l) /(k-l)$.
5. (a) $\frac{2}{1-i}=\frac{2}{1-i} \cdot \frac{1+i}{1+i}=1+i$. The argument is $\pi / 4$ and the magnitude is $\sqrt{2}$ so we get $\sqrt{2} e^{i \pi / 4}$.
(b) The modulus is $e$ and the argument is $\pi / 3 \cdot \cos (\pi / 3)=1 / 2$ and $\sin (\pi / 3)=\sqrt{3} / 2$, so the real part is $e / 2$ and the imaginary party is $\sqrt{3} e / 2$.
(c) The modulus of a fourth root of -1 must be 1 , since it is a positive real number whose fourth power is $|-1|=1$. The argument must be one quarter of an argument of -1 . The argument of -1 is only defined up to adding integer multiples of $2 \pi$, so when I take a quarter of it I get a number which is only defined up to adding integer multiples of $\pi / 2$. One argument of -1 is $\pi$, so the arguments of the fourth roots are given by $\pi / 4$ plus integer multiples of $\pi / 2: \pm \pi / 4, \pm 3 \pi / 4$. These have rectangular descriptions: $( \pm 1 \pm i) / \sqrt{2}$.
(d) The modulus of $e^{a+b i}$ is $e^{a}$, and $|1+i|=\sqrt{2}$, so if $e^{a+b i}=1+i$ then $e^{a}=\sqrt{2}$ or $a=(\ln 2) / 2$. The argument of $e^{a+b i}$ is $b$, and the argument of $1+i$ is $\pi / 4$. But the argument is only defined up to adding integer multiples of $2 \pi$, so $b$ can be $(8 k+1)(\pi / 4)$ for any integer $k$.
6. (a) $e^{4 i t}=\cos (4 t)+i \sin (4 t)$. On the other hand, $\left(e^{i t}\right)^{4}=(\cos t+i \sin t)^{4}$. The imaginary part of this power has contributions whenever the sine term is raised to an odd power: it is $4 \cos ^{3} t \sin t-$ $4 \cos t \sin ^{3} t$.
(b) $e^{-t} \cos (2 \pi t)=\operatorname{Re} e^{z t}$ for $z=-1+2 \pi i$. $\operatorname{Im} e^{z t}=e^{-t} \sin (2 \pi t)$ has the middle graph below. The curve in $\mathbb{C}$ parametrized by $e^{z t}$ looks like the right hand graph.

(c) $a=0, b \neq 0: \mid e^{(a+b i) t}=e^{a t}$ must be constant to get a circle, so $a=0$; while the argument of $e^{(a+b i) t}$ takes on all values as $t$ varies as long as $b \neq 0$.
(d) $b=0, a \neq 0$ : The curve will rotate if $b$ is not zero; and its distance from 0 won't change if $a=0$. The only possible ray is the positive real axis.
(e) $a<0 ;\left|e^{(a+b i) t}\right|=e^{a t}$ converges to zero as $t \rightarrow \infty$ exactly when $a<0$.
(f) $a>0$ and $b>0:\left|e^{(a+b i) t}\right|=e^{a t}$ is increasing exactly when $a>0$, and the angle $b t$ is increasing exactly when $b>0$.
7. (a) $\frac{e^{i t / 2}}{1+i}=\frac{1-i}{2}(\cos (t / 2)+i \sin (t / 2))$ so $\omega=1 / 2, a=1 / 2$, and $b=1 / 2$. [Another correct answer is $\omega=-1 / 2, a=1 / 2, b=-1 / 2$; but normally we expect $\omega \geq 0$ since one can always arrange this.] By SN $A, \phi$ are the polar coordinates of the point in the plane with rectangular cooridinates $(a, b)$. So $A=1 / \sqrt{2}$ and $\phi=\pi / 4$.

(b) $x(t+\Delta t) \simeq x(t)+k(y(t)-x(t)) \Delta t$ by the same reasoning as the rootbeer cooler model in Lecture. This leads to $\dot{x}+k x=k y$. The system is the canal, whose characteristics are captured by the coupling constant $k$. The input signal is the elevation of the ocean, $y$, or rather $k$ times that. The output signal is the water height in the bay, $x$.
(c) The period is $4 \pi$, so the circular frequency $\omega=2 \pi / P=1 / 2$. The equation we are looking at is $\dot{x}+k x=k \cos (\omega t)$.
(d) To answer this we have to find the periodic solution to the equation. Let's do this by using the complex exponential. The equation is the real part of $\dot{z}+k z=e^{i \omega t}$. By the ERF, this has solution given by $z_{p}=k e^{i \omega t} /(i \omega+k)$. This function parametrizes a circle of radius $k /|i \omega+k|$. Its real part is the periodic solution of our original equation, and it has maximal value $k /|i \omega+k|$. Setting this equal to $1 / \sqrt{2}$ gives $\omega^{2}+k^{2}=2 k^{2}$ or $k=\omega$. Now remember that $\omega=1 / 2$, so $k=1 / 2$.

We know that the amplitude of the steady state solution is $A=1 / \sqrt{2}$. To find the phase lag $\phi$, we remember that the the expression $x_{p}=A \cos (\omega t-\phi)$ arises as the real part of $z_{p}=k e^{i \omega t} /(i \omega+k)=$ $(1 / 2) e^{i t / 2} /(i / 2+1 / 2)=e^{i t / 2} /(1+i)$. But it's also the real part of $A e^{i(\omega t-\phi)}$, so will try to write $z_{p}=e^{i t / 2} /(1+i)$ in the form $A e^{i(\omega t-\phi)}$. To do this, write $1 /(1+i)=(1-i) / 2$ in polar form: $(1-i) / 2=(1 / \sqrt{2}) e^{-\pi i / 4}$. Substituting, $z_{p}=(1 / \sqrt{2}) e^{-\pi i / 4} e^{i t / 2}=(1 / \sqrt{2}) e^{i(t / 2-\pi / 4)}$. The result is that $A=1 / \sqrt{2}$ (as we know), and $\phi=\pi / 4$. This checks with the Mathlet!

