
18.03 Problem Set 3 Solutions: Part II


Each problem is worth 16 points, spread across Parts I and II. The Part I problems 
are worth: 8. There are 8 parts, each worth 1 point. 9. 2 points. 11. 5 points 
(2-C1(a) = EP 2.1: 33!). 12. 4 points. 

8. (a) [2] The Mathlet shows a semi-stable critical point when a = 1.00. The 
critical points of ẏ = .25 − ay + y2 occur at values of y given by the solutions of 
0 = .25 − ay + y2, which are (a/2) ±

�
a2 − 1/2. The smallest positive value of a 

for which the expression inside the square root is not negative is a = 1, so for all 
smaller values of a the solutions grow without bound. When a = 1, the equation is 
ẏ = .25 − y + y2 = (.5 − y)2, so the derivative is always non-negative and the critical 
point (at y = .5) is semi-stable. Thus the slightest deviation of lovebug population 
above that value gets into the region in which the population continues to grow, 
without bound. So this level of spray is not safe for Farmer Jones. 

(b) [2] To obtain a critical point at y = 0.25 we want a to be such that 0 = .25−ay+y2 

for that value of y: 0 = (1/4) − a(1/4) + 1/16, or a = 5/4. This is confirmed by 
the Mathlet (though you have to accept a = 1.24 as an approximation to a = 5/4). 
As long as the initial population is at most the value of the upper critical point, 
the spray will force the population down to y = .25. The values of y for which 
.25 − (1.25)y + y2 = 0 are y = .25 and y = 1, which is very close to what the Mathlet 
shows. 

(c) [2] This problem is slightly 
badly worded, since solutions above 
the equilibrium y = 1 reach +√
in finite time, while solutions below 
the equilibrium reach −√ in finite 
time as time is run backwards. 
(d) [2] The bifurcation diagram 
plots the critical values of y against 
the parameter a. In this example, 
it plots the roots of .25 − ay + y2 

against a. So it is given by the equa
tion .25 − ay + y2 = 0. 
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9. (a) [5] ẏ = .25 + y2 is separable: = dt. With u = 2y, du = 2 dy, and 

1 + 4y2 

2 arctan(2y) = t − c. The initial condition gives c = 0, so y = (1/2) tan(t/2). This 
becomes infinite for the first time after t = 0 when t/2 = �/2 or t = �. 

(b) [5] ẋ = Ix + q has a critical point at x = −q/I, which is unstable because of the 
assumption that I > 0. If q < 0 then −q/I > 0. This is the “retirement” scenario: 
you keep a certain amount of money in the bank and withdraw exactly the interest 
payments and nothing more. If q > 0 the −q/I < 0. This is the “credit card” 
scenario: you owe the bank a certain amount, and they charge you interest for it, 
which you pay without ever reducing or increasing the amount you owe. 
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(c) [4] Using x(t) = 1, the equation ẋ + p(t)x = q(t) gives p(t) = q(t). Using 
x(t) = e−t, it gives −e−t + p(t)e−t = q(t) = p(t), which can be solved to get p(t) = 
−t/(e−t − 1). 

11. (a) [1] Looks like about −0.75. 

(b) [5] The ODE is ẍ+2 ̇x+3/4 = 0. The characteristic polynomial is s2 +2s+3/4, and 
by the quadratic formula the roots are −1 ± 1 − (3/4) = −1 ± (1/2), or −1/2 and 
−3/2. Both roots are negative: this is the overdamped situation. The general solution 
is c1e

−t/2 + c2e
−3t/2 . Evaluate at t = 0 to get 1/2 = x(0) = c1 + c2 or c2 = 1/2 − c1. 

Differentiate to get ẋ(0) = c1/2 − (3/2)c2 = c1/2 − (3/2)(1/2 − c1) = c1 − 3/4− −
or c1 = 3/4 + ẋ(0) and c2 = 1/2 − (3/4 + ẋ(0)) = −1/4 − ẋ(0). So the solution is 

x(0))e−3t/2x = (3/4 + ẋ(0))e−t/2 − (1/4 + ˙ . 

x(0))e−3t/2 

e
(c) [5] Solve x(t) = 0: (3/4 + ẋ(0))e−t/2 = (1/4 + ˙ . Multiply through by 

t/2: 3/4 + ẋ(0) = (1/4 + ẋ(0))e−t or e−t = (3/4 + ẋ(0))/(1/4 + ẋ(0)). This occurs 
for some t > 0 as long as the right hand side is between 0 and 1. So numerator and 
denominator have to have the same sign. They do if ẋ(0) > −1/4 or if ẋ(0) < −3/4. 
If ẋ(0) > −1/4 however then both numerator and denominator are positive, so, since 
the numerator is greater than the denominator, the quotient is greater than 1. This 
shows that x(t) = 0 for some t > 0 exactly when ẋ(0) < −3/4: v = −3/4, in 
agreement with what the Mathlet showed. [Since there’s then only one value of t 
giving x = 0, this work shows that the door swings through at most once for t > 0. 
If ẋ(0) > −1/4, then you get exactly one value of t for which x(t) = 0 but that value 
of t is negative. If −3/4 � ẋ(0) � −1/4, the solution never becomes zero in the past 
or in the future.] 

When ẋ(0) = −3/4, the solution is (1/2)e−3t/2 . 

12. (a) [4] cosh(0) = 1 and sinh(0) = 0. cosh�(x) = sinh(x) and sinh�(x) = cosh(x), 
so cosh�(0) = 0 and sinh�(0) = 1. Therefore the value of y = c1 cosh(x) + c2 sinh(x) at 
x = 0 is y(0) = c1, and the value of y� = c1 cosh�(x) + c2 sinh�(x) at x = 0 is y�(0) = c2: 
y = y(0) cosh(x) + y�(0) sinh(x). 

(b) [4] Let’s write y1(x) = cos(�x) and y2(x) = sin(�x). Then y� = −�y2 and
1 

y = �y1, so y�� = −�2y1 and y�� = −�2y2. Then y1(0) = 1, y2(0) = 0, y
1
(0) = 0, 

y
2 1 2 

2

� (0) = �, so the value of y = c1y1 + c2y2 at x = 0 is y(0) = c1 while the value of 
y = c1y

� + c2y
� at x = 0 is y�(0) = c2�: y = y(0) cos(�x) + (y�(0)/�) sin(�x).
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x dx 
(c) [4] The ODE is 

dt3 
− 

dt 
= 0. The roots of the characteristic polynomial are 

t 

c
−1, 0, 1 so there are three exponential solutions, e−t, 1, and e . Suppose that e−t = 
1 + c2e

t . As t � √, the right hand side grows large unless c2 = 0. Since the left 
hand side does not grow large, we must have c2 = 0. But then the right hand side is 
the constant c1, while e−t falls to 0 as t � √. This shows that our supposition must 
have been wrong. Same with writing 1 or et as linear combinations of the other two. 
There are many other ways to see that these three functions are linearly independent. 


