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18.03 Problem Set 4 Solutions: Part II


Each problem is worth 16 points, spread across Parts I and II. Part I values: 13 3 
points (for 2C1 cde; ab was on the previous problem set); 16 1 point for each of the 
four questions. 

13. (a) [2] x + (2.50)x = 0. Everyone will pick different initial conditions. Whatever ¨
they are, successive maxima will differ by P = 2π/ωn, and ωn = 

√
2.50, so P �

3.9738353. I get this value to within 0.01 when I do it. 

(b) [2] ωd = k − (b/2)2 = 2.50 − (1/16) � 1.5612495, P = 2π/ωd � 4.0244595, 
which is 0.0506242 larger than the undamped period. The locations of the maxima 
will depend upon the chosen initial conditions. For the ones I chose, I get 4.04, 4.03 
for the differences in the times of maxima, and .37, .36 for the ratios of the x values. 
The time differences match the computed value to within 1%. 

(c) [2] At the points where the cosine hits a maximum, the damped cosine becomes 
tangent to the envelope Ae−bt/2 . The envelope never has a horizontal tangent, so 
these points can’t be maxima for x. 

(d) [2] ẋ = e−bt/2((−b/2) cos(ωdt−φ)−ωd sin(ωdt−φ)). This is zero when (−b/2) cos(ωdt−
φ) = ωd sin(ωdt − φ), or when tan(ωdt − φ) = −b/2ωd. The function tan repeats its 
values just when the input is increased by π, so successive extreme points for x occur 
separated by a time period Δt such that ωdΔt = π. Every other one is a maximum, 
so the separation between maxima is 2Δt = 2π/ωd = P . 

e
(e) [2] When t is increased by P , the value of cos(ωdt − φ) is not changed. There

−b(t+P )/2/e−bt/2fore x(t + P )/x(t) = = e−bP /2, which is about 0.36563677, in good 
agreement with the measured decrement. 

(f ) [3] (i) e−2t; ce−2t . 

(ii) The characteristic polynomial is s2 + 5s + 4, and its roots are −4 and −1. The 
basic solutions are e−4t , e−t . The general solution is ae−4t + be−t . 

e

(iii) The characteristic polynomial is s3 + 1, and its roots are the cube roots of −1: 
−1, (1 + 

√
3i)/2, (1 −

√
3i)/2. The basic real solutions are e−t , et/2 cos(

√
3t/2), and 

t/2 sin(
√

3t/2), and the general solution is c1e
−t +c2e

t/2 cos(
√

3t/2)+c3e
t/2 sin(

√
3t/2) 

or c1e
−t + Aet/2 cos(

√
3t/2 − φ). 

14. (a) Using the ERF Aert/p(r) is a solution to p(D)x = Aert unless p(r) = 0: 

(i) [2] p(−3) = 2 − 3 = −1 so xp = 2e−3t/(−1). 

(ii) [2] p(−3) = (−3)2 + 5(−3) + 4 = −2 so xp = e−3t/(−2) = −e−3t/2. 

(iii) [2] p(−3) = (−3)3 + 1 = −26 so xp = e−3t/(−26) = −e−3t/26. 

3it(b) (i) [3] ż + 2z = 2e3it: p(3i) = 3i + 2 so zp = 2e /(2 + 3i) = ((4 −6i)/13)(cos(3t) + 
i sin(3t)) and the imaginary part is xp = −(6/13) cos(3t) + (4/13) sin(3t). 

(ii) [3] z̈ + 5 ̇z + 4z = e2it: p(2i) = (2i)2 + 5(2i) + 4 = 10i so zp = e2it/(10i) = 
(−i/10)(cos(2t) + i sin(2t)) and the real part is xp = (1/10) sin(2t). 
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(iii) [4] d3z/dt3 + z = e2it: p(2i) = (2i)3 + 1 = 1 − 8i so zp = e2it/(1 − 8i) = 
((1+8i)/65)(cos(2t)+i sin(2t)) and the real part is xp = (1/65) cos(2t)−(8/65) sin(2t). 

2] x = at2 + bt + c 
1] ẋ = 2at + b15. (a) (i) [3] 

t2 = 2at2 + (2b + 2a)t + (2c + b) 

so a = 1/2, b = −1/2, c = 1/4 and xp = (1/2)t2 − (1/2)t + (1/4). 

4] x = at2 + bt + c 
5] ẋ = 2at + b 

(ii) [3] 
1] x = 2a¨

5t2 + 4 = 4at2 + (4b + 10a)t + (4c + 5b + 2a) 

so a = 5/4, b = −10a/4 = −25/8, c = 137/32 and xp = (5/4)t2 − (25/8)t + (137/32). 

x = at3 + bt2 + ct + d 
d3x/dt3 = 6a(iii) [4] 
t3 + 1 = at3 + bt2 + ct + (d + 6a) 

so a = 1, b = 0, c = 0, d = −5 and xp = t3 − 5. 

(b) (i) [2] x = −2e−3t − (12/13) cos(3t) + (8/13) sin(3t) + ce−2t . 

(ii) [2] x = −e−3t/2 + (5/4)t2 − (25/8)t + (137/32) + ae−4t + be−t or x = −e−3t/2 + 
(5/4)t2 − (25/8)t + (137/32) + ae−4t + be−t . 

(iii) [2] x = t3 − 5 + (4/65) cos(2t) − (32/65) sin(2t) + c1e
−t + c2e

t/2 cos(
√

3t/2) + 
c3e

t/2 sin(
√

3t/2) or x = t3−5+(4/65) cos(2t)−(32/65) sin(2t)+c1e
−t+Aet/2 cos(

√
3t/2−

φ). 

16. (a) [2] The white line represents the amount that the spring has stretched. When 
blue dot is above the yellow one, it means the spring is stretched. When the blue dot 
is below the yellow one, it means the spring is compressed (spueezed). When they 
coincide, the spring is relaxed. 

(b) [2] When ω = 1.95, A = 4.02. [This is above the value A = 4.00 when ω = 2.0.] 

(c) [4] p(iω) = (iω)2 + (1/2)iω + 4 = (4 − ω2) + iω/2 so f (ω) = p(iω) 2 = (4 −| |
ω2)2 + ω2/4 = 16 − (31/4)ω2 + ω4 . f �(ω) = −(31/2)ω + 4ω3 is zero when ω = 0 
and when ω = 31/8. The relevant value is ωr = 31/8 � 1.968502. f (ωr ) =±
16−(31/4)(31/8)+(31/8)2 = (322 −312)/64 = 63/64. The amplitude of the sinusoidal 
solution with ω = ωr is k/|p(iωr ) = 4 64/63 = 32/

√
63 � 4.031621. | 

(d) [4] The sinusoidal solution is given by xp = Re (keiωt/p(iω)). The amplitude is 
A = k/ p(iω) . The phase lag is π/2 when xp = A cos(ωt − π/2) = A sin(ωt). Now if 
we write 

|
p(iω

|
) = a+bi, then keiωt/p(iω) = (k/(a2 +b2))(a−bi)(cos(ωt)+i sin(ωt)) has 

real part as desired just when a = 0. Since p(iω) = (iω)2 + biω + k = (k − ω2) + biω, 
this occurs just when ω = 

√
k = ωn. In our example, the natural frequency ωn is 2, 

larger than ωr . 


