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18.03 Problem Set 5 Solutions: Part II


Each problem is worth 16 points, spread across Parts I and II. Part I values: 20 3 points; 
21 2 points. 

17. (c) [6] We have to check that (1/2) − (1/(1 + bi) = 1/2. There are many ways to do |	 |
this. Here is one:	

� � � � 
� 1 1 � � 1 + bi − 2 � 1 bi − 1
� 2 

− 
1 + bi � 

= 
� 2(1 + bi) � 

=
2 
· ||bi + 1| 

But +1 and −1 are equidistant from bi, so the second factor is 1. 

(b) [5] The clever way to do this is to think of the trajectory of W (i�), that, is, the curve 
that it parametrizes in the complex plane. It’s a circle of radius 1/2 and center 1/2. The 
gain is the distance from the origin. This equals 1/

�
2 when the angle is ±�/4. One way 

to see this is to write the point on the circle as 1/(1 + bi), as in (c), and observe that 
|1/(1 + bi) = 

�
2 just when b = ±1. So −ω = ±�/4.| 

(a) [5] Now we know that gain of 1/
�

2 occurs when W (i�) = (1 ± i)/2. The handout has 
a nice expression for W (i�)−1 which we will use. From the fact that points on the circle 
are the reciprocals of points on the line with real part 1, or by direct calculation, we find 

i �2 

((1 √ i)/2)−1 = 1 ± i, so 1 − n − �2 

= 1 ± i. Thus �2 
n − �2 = ±b�/m. These quadratic 

b/m � 
equations have solutions � = ±(b/2m) ± (b/2m)2 + �2 

n, where the signs are independent. 
The second term is larger in absolute value than the first, so the positive solutions are the 
square root plus or minus the first term, and differ by twice b/2m, or b/m. 

18. (a) [4] We have found that homogeneous linear equations have solutions with more than 
one extreme point only in the underdamped case. In that case, we know that successive 
extrema of solutions are separated by half the period, so, from what we’ve been told, �/�d = 
� or �d = 1. The solution has the form x = Ae−bt/2 cos(�dt − ω), and when t is increased 
by half a period the cosine simply changes sign. Since the half-period is �, x(�) = −1/2 

Ae−b�/2implies that 1/2 = −x(�)/x(0) = /A = e−b�/2 . Thus b = 2(ln 2)/�. But 1 = �2 = d 

�2 
n − (b/2)2, so k = �2 = 1 + ((ln 2)/�)2 .n 

k] x = 2 sin(2t) 
b] ẋ = 4 cos(2t)

(b) [4] Just substitute this in: 
1] ẍ = −8 sin(2t) 

so (since 

cos(2t) = (2k − 8) sin(2t) + 4b cos(2t) 

cos(2t) and sin(2t) are linearly independent) k = 4 and b = 1/4. 

k] x = 1 + e−t sin t 
b] ẋ = e−t(− sin t + cos t)

(c) [4] Just substitute this in: 
¨ = −2e−t	 so (since 1, 

1] x	 cos t 

e

2 = k + e−t((k − b) sin t + (b − 2) cos t)

−t cos t and e−t sin t are linearly independent) k = 2 and b = 2. [Notice that this would be


forced even if you only knew that the input was constant.]


(d) [4] This is the imaginary part of the complex equation is z̈ + z = teit . Look for a solution 
of the form z = eitu. If we substitute this in, ż = eit( ̇u + iu), z̈ = eit(¨
e

u + 2iu̇ − u), so 
itt = z̈ + z = eit(¨ ¨u + 2iu̇). Cancel the exponental: u + 2iu̇ = t. (We could also have used 

ESL: p(s) = s2 + 1, p(D)(eitu) = eitp(D + iI)u, and p(D + iI) = (D + iI)2 + I = D2 + 2iD, so 
we arrive at the same result.) Now we have to use reduction of order: v = u̇, so v̇ + 2iv = t. 
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By undertermined coefficients, try vp = at + b; v̇ = a, so t = v̇ + 2iv = 2iat + (a + 2ib), which 
implies a = 1/2i = −i/2 and then b = −(1/2i)a = 1/4, so vp = −(i/2)t + (1/4). Then so 

itup = −(i/4)t2 + (1/4)t, zp = (−(i/4)t2 + (1/4)t)e . xp is the imaginary part of this, which 
is xp = −(t2 /4) cos t + (t/4) sin t. 

20. (a) [0] This is very subjective! 

(b) [4] bn = (2/�) t/2 sin(nt) dt which we can integrate by parts: u = t, dv = sin(nt) dt, 
0 

� 
du = dt, v = −(1/n) cos(nt), and cos(nt) dt = (1/n) sin(nt) + c, 

0 + (1/n2)[sin(nt)]� so bn = (1/�)([−(t/n) cos(nt)]� 
0 ). Now cos(n�) = 1 for n even and −1 

for n odd, and sin(n�) = 0 for all n, so bn = (1/�)(−�/n) = −1/n for n even and bn = 
−(1/�)(−�/n) = 1/n for n odd: f (t) = sin(t) − (1/2) sin(2t) + (1/3) sin(3t) − · · ·. The 
settings b1 = 1.000, b2 = .500, b3 = .330, b4 = .250, b5 = .200, b6 = .165, lead to a − − −
much better approximation! 

b

(c) [3] For n even, the function sin(nt) is odd about �/2, while the target function is even 
about �/2. This effect may be expressed in many ways. Any initial setting and any sequence 
of optimizations leads to bn = 1/n for n odd. These fractions are approximated by b1 = 1.000, 
3 = .330, b5 = .200, b7 = .140, b9 = .110 or .112, b11 = .090 or .092. 

b
(d) [3] sin(t − �/4) = − cos(�/4) cos t + sin(�/4) sin t = (1/

�
2)(− cos t + sin t), so −a1 = 

1 = 1/
�

2 and all the other Fourier coefficients are zero. 

target sine/cos 
A sine 
B cos 

(e) [3] C cos 
D sine 
E sine 
F cos 

even/odd 
odd 
odd 
all 
odd 

See the Supplementary Notes 
more information about this. 

§16.4 for 

even 
even 

21. (a) [3] cos(t/2) is even, so bn = 0 for all n. cos(t/2) � 0 for 0 � t � �, so 
2 

an = cos(t/2) cos(nt) dt. To integrate this we’ll use the trig identity stated in EP 8.1: 
� 0 

27, to see 

1 sin((n + (1/2))t) 
an =

1 
� � 

(cos((n+(1/2))t)+cos((n−(1/2))t)) dt = + 
sin((

n

n 
−
−
(1

(1

/

/

2)

2))t) 
. 

� 0 � n + (1/2) 
0 
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n sin((n + (1/2))�) 
0 1 
1 −1 
2 1 
. . . . . . 

sin((n − (1/2))�) 
−1 
1 
−1 
. . . 

1 1 1 
so we have to give = alternating signs: 

n + (1/2) 
− 

n − (1/2) 
−

n2 − (1/4) 

1 1 cos(t) cos(2t)
cos(t/2) = + + .| | 

� 
−−1/4 1 − (1/4) 

− 
4 − (1/4) 

· · · 

� � 
1 

� � � � � � 
2 

� 
2� n�t nt 1 

� 
2� nt 

(b) [3] With L = 2�, bn = sq(t) sin dt = sin dt − sin dt 
2� 0 2� � 0 2 2 

�� � � � �� 
1 cos(nt/2) � 1 cos(nt/2) 

�

� 2� 
2 

�


 
 n� � � 2n� 
 n� 
= −

� 
� n/2 

�

� 
0 

+ 
� n/2 

�

� = 
n� 

− cos 
2 

− 1 + cos 
2 

− cos 
2 

2 
 �n � 2�n 
= 1 − 2 cos + cos . 

n� 2 

n cos(n�/2) cos(n�) 
0 1 1 
1 0 −1 
2 −1 1 
3 0 −1 
. . . . . . . . . 

2 

1 − 2 cos(n�/2) + cos(n�) 
0 
0 
4 
0 
. . . 

and the pattern repeats. Thus bn = (8/n�) for n = 2, 6, 10, . . . and zero otherwise, so 
8 sin(2t/2) sin(6t/2) 4 sin(3t) sin(5t)

sq(t) = + + = sin(t) + + + . This is the 
� 2 6 

· · · 
� 3 5 

· · · 
same as the Fourier series of sq(t) when it is regarded as a function of period 2� instead of 
period 4�. What was b5 before is now called b10, but in either case it is the coefficient of 
sin(5t), and that coefficient is the same in both ways of looking at sq(t). 

(c) [1] 1 + sin(t) + 2 sq(t) = 1 + (1 + (4/�)) sin(t) + (4/�)((1/3) sin(3t) + (1/5) sin(5t) + · · ·). 
(d) [2] sq(t − (�/2)) = (4/�)(sin(t − (�/2)) + (1/3) sin(3t − (3�/2)) + (1/5) sin(5t − (5�/2)) + 

Now sin(� − (n�/2)) = − cos � if n = 1, 5, 9, . . ., and sin(� − (n�/2)) = cos � if· · ·). 
n = 3, 7, 11, . . ., so sq(t − (�/2)) = (4/�)(− cos(t) + (1/3) cos(3t) − (1/5) cos(5t) + · · ·). 
(e) [3] g(t) satisfes g�(t) = sq(t) and g(0) = 0. The general solution to the ODE is 

4 � sin(kt) 4 � cos(kt) 
g(t) = sq(t) dt = dt = + c . 

� k 
−

� k2 
k odd k odd 

� 4 � cos(kt)
The constant is the average value of g(t), which is �/2, so g(t) = . 

2 
− 

� k2 
k odd 

� 1 �2 

(Evaluating this at t = 0 gives an identity of Euler’s, = .)
k2 8 

k odd 

(f ) [1] sq(�t) = (4/�)(sin(�t) + (1/3) sin(3�t) + (1/5) sin(5�t) + · · ·). 
(g) [1] This function can be expressed in terms of the standard squarewave: h(t) = (1/2)(1 −
sq(2�t)) = (1/2) − (2/�)(sin(2�t) + (1/3) sin(6�t) + (1/5) sin(10�t) + · · ·). 


