18.03 Problem Set 6 Solutions: Part II

Each problem is worth 16 points, spread across Parts I and II. Part I values: 22: 7C-1, 3 pts; 7C-2, 1 pt. 23: 4 pts. 24: 4 pts.
22. (a) $[2] 1=\mathrm{sq}(\pi / 4)=\frac{4}{\pi} \sum_{k \text { odd }} \frac{\sin (k \pi / 4)}{k}$.

k	$\sin (k \pi / 4)$
1	$1 / \sqrt{2}$
3	$1 / \sqrt{2}$
5	$-1 / \sqrt{2}$
7	$-1 / \sqrt{2}$
\vdots	\vdots

$1=\frac{4}{\pi}\left(1 / \sqrt{2}+\frac{1 / \sqrt{2}}{3}-\frac{1 / \sqrt{2}}{5}-\frac{1 / \sqrt{2}}{7}++--\cdots\right)$ or $1+\frac{1}{3}-\frac{1}{5}-\frac{1}{7}++--\cdots=\frac{\sqrt{2} \pi}{4}$.
(b) (i) [2] Method I: For $n>0, a_{n}=\frac{2}{2} \int_{0}^{2} t \cos \left(\frac{n \pi t}{2}\right) d t$. Integrate by parts: $u=t$, $d v=\cos \left(\frac{n \pi t}{2}\right) d t, d u=d t, v=(2 / n \pi) \sin \left(\frac{n \pi t}{2}\right):$

$$
a_{n}=\left.\frac{2 t}{n \pi} \sin \left(\frac{n \pi t}{2}\right)\right|_{0} ^{2}-\int_{0}^{2} \frac{2}{n \pi} \sin \left(\frac{n \pi t}{2}\right) d t=\left.\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi t}{2}\right)\right|_{0} ^{2}
$$

The values of the cosine alternate between -1 (for n odd) and +1 (for n even), so $a_{n}=$ $-8 / n^{2} \pi^{2}$ for n odd and $a_{n}=0$ for n even. Of course a_{0} is twice the average value of $f(t)$, which is $0: f(t)=-\frac{8}{\pi^{2}}\left(\cos (\pi t / 2)+\frac{\cos (3 \pi t / 2)}{9}+\cdots\right)$.
Alternatively, in Lecture 22 we computed that the Fourier series of the even periodic function $g(t)$ of period 2π which is t between 0 and π is $\frac{\pi}{2}-\frac{4}{\pi}\left(\cos (t)+\frac{\cos (3 t)}{9}+\cdots\right)$. Then $f(t)=\frac{2}{\pi} g\left(\frac{\pi t}{2}\right)-1=-\frac{8}{\pi^{2}}\left(\cos (\pi t / 2)+\frac{\cos (3 \pi t / 2)}{9}+\cdots\right)$.
A periodic solution to $\ddot{x}+\omega_{n}^{2} x=f(t)$ is thus given by

$$
x_{p}=-\frac{8}{\pi^{2}}\left(\frac{\cos (\pi t / 2)}{\omega_{n}^{2}-(\pi / 2)^{2}}+\frac{\cos (3 \pi t / 2)}{9\left(\omega_{n}^{2}-(3 \pi / 2)^{2}\right)}+\frac{\cos (5 \pi t / 2)}{25\left(\omega_{n}^{2}-(5 \pi / 2)^{2}\right)}+\cdots\right) .
$$

(ii) [2] When $\omega_{n}=k \pi / 2$ for k an odd integer.
(iii) [2] The smallest such (positive) value is $\pi / 2$. For ω_{n} just less than this, the term $-\frac{8}{\pi^{2}} \frac{\cos (\pi t / 2)}{\omega_{n}^{2}-(\pi / 2)^{2}}$ dominates the sum. This is a very large multiple of $\cos (\pi t / 2)$, in phase.
(iv) [2] When it exists (i.e. when ω_{n} is not an odd multiple of $\pi / 2$), the particular solution x_{p} is periodic of minimal period $P=(2 \pi) /(\pi / 2)=4$. In that case, the general solution is $x_{p}+x_{h}$, where $x_{h}=a \cos \left(\omega_{n} t\right)+b \sin \left(\omega_{n} t\right)$. If some integral multiple of the period of x_{p} is also an integral multiple of the period of x_{h}, then that common number is a period for $x_{p}+x_{h}$. The period of x_{h} is $2 \pi / \omega_{n}$, so what is required is that there are integers k and l such that $4 k=\left(2 \pi / \omega_{n}\right) l$. This is the same as requiring that ω_{n} should be a rational multiple of π. [This is a tricky problem!]
(v) [0] This problem is even trickier (and trickier than I had intended). My point was that in the case just studied, all solutions are periodic.
23. (a) [6] (i)

(ii)

(b) $[6]$ (i) $f^{\prime}(t)=1+2 \delta(t+1)-3 \delta(t-1)$.
(ii) $g^{\prime}(t)=u(t-1)-u(t-3)+3 \delta(t-2)$.

(iii)

or
(iii) $h^{\prime}(t)=\sum_{k=-\infty}^{\infty} \delta(t-k)$.

24. (i) [2] For $t>0$ the unit step response satisfies $2 \dot{x}+k x=1$ with initial condition $x(0)=0 . \quad x_{p}=1 / k, x_{h}=c e^{-k t / 2}, x=(1 / k)\left(1-e^{-k t / 2}\right)$. The unit step response is $v(t)=(1 / k)\left(1-e^{-k t / 2}\right)$ for $t>0, v(t)=0$ for $t<0$.
[2] For $t>0$ the unit step response satisfies $\ddot{x}+2 \dot{x}+5 x=1$ with initial condition $x(0)=$ $\dot{x}(0)=0 . x_{p}=1 / 5, x_{h}=e^{-t}(a \cos (2 t)+b \sin (2 t))$. With $x=x_{p}+x_{h}, x(0)=0$ implies that $a=-1 / 5$. Then $\dot{x}=e^{-t}((-a+2 b) \cos (2 t)+(-2 a-b) \sin (2 t))$ so $0=\dot{x}(0)=(-a+2 b)$, which implies $b=-1 / 10: v=(1 / 5)-(1 / 10) e^{-t}(2 \cos (2 t)+\sin (2 t))$ for $t>0, v=0$ for $t<0$.
[2] For $t>0$ the unit step responses satisfies $\frac{d^{3} x}{d t^{3}}=1, x(0)=\dot{x}(0)=\ddot{x}(0)=0$: so $v=t^{3} / 6$ for $t>0, v=0$ for $t<0$.
(ii) [6] The unit impulse responses can be obtained directly, or by differentiating the unit step responses. They are: for $t>0, w=(1 / 2) e^{-k t / 2} ; w=(1 / 2) e^{-t} \sin (2 t) ; w=t^{2} / 2$.
Graphs omitted from this solution sheet, but count 1 point each. The main points: In the first one, $v(0+)=0$ and $v(t) \rightarrow 1 / k$ as $t \rightarrow \infty$; and $w(0+)=1 / 2$. In the second one, $v(0)=\dot{v}(0)=0$ and $v(t)$ oscillates around the value $1 / 5$ and converges to $1 / 5$ as $t \rightarrow \infty$; $w(0+)=0, \dot{w}(0+)=1$, and $w(t)$ is a damped sinusoid.

