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18.03 Problem Set 6 Solutions: Part II 

Each problem is worth 16 points, spread across Parts I and II. Part I values: 22: 7C­1, 3 
pts; 7C­2, 1 pt. 23: 4 pts. 24: 4 pts. 
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22. (a) [2] 1 = sq(π/4) = . 
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(b) (i) [2] Method I: For n > 0, an = t cos dt. Integrate by parts: u = t,
2 20 

nπt	 nπt 
dv = cos dt, du = dt, v = (2/nπ) sin : 
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The values of the cosine alternate between −1 (for n odd) and +1 (for n even), so an = 
−8/n2π2 for n odd and an 0 for n even. Of course a0 is twice the average value of f(t),=


8	 cos(3πt/2)
which is 0: f(t) = − cos(πt/2) +	 . 

π2	 9
+ · · · 

Alternatively, in Lecture 22 we computed that the Fourier series of the even periodic function 
π 4 cos(3t) 

g(t) of period 2π which is t between 0 and π is cos(t) +	 . Then 
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f(t) = g − 1 = − cos(πt/2) +	 . 
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+ · · · 

A periodic solution to ẍ + ω2 x = f(t) is thus given by n
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(ii) [2] When ωn = kπ/2 for k an odd integer. 

(iii) [2] The	 smallest such (positive) value is π/2. For ωn just less than this, the term 
8 cos(πt/2) 

n − (π/2)2 
dominates the sum. This is a very large multiple of cos(πt/2), in phase. − 
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(iv) [2] When it exists (i.e. when ωn is not an odd multiple of π/2), the particular solution 

p is periodic of minimal period P = (2π)/(π/2) = 4. In that case, the general solution is 
p + xh, where xh = a cos(ωnt) + b sin(ωnt). If some integral multiple of the period of xp 

is also an integral multiple of the period of xh, then that common number is a period for 
p + xh. The period of xh is 2π/ωn, so what is required is that there are integers k and l 

such that 4k = (2π/ωn)l. This is the same as requiring that ωn should be a rational multiple 
of π. [This is a tricky problem!] 



(v) [0] This problem is even trickier (and trickier than I had intended). My point was that 
in the case just studied, all solutions are periodic. 
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23. (a) [6] (i) � (ii) (iii) 
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(b) [6] (i) f �(t) = 1+2δ(t+1)−3δ(t−1). or 
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(ii) g�(t) = u(t− 1) − u(t− 3) + 3δ(t− 2). 
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(iii) h�(t) = δ(t− k). 
k=−∞ 

24.	 (i) [2] For t > 0 the unit step response satisfies 2 ̇x + kx = 1 with initial condition 
−kt/2).x(0) = 0. xp = 1/k, xh = ce−kt/2 , x = (1/k)(1 − e The unit step response is 

v(t) = (1/k)(1 − e−kt/2) for t > 0, v(t) = 0 for t < 0. 

¨[2] For t > 0 the unit step response satisfies x + 2 ̇x + 5x = 1 with initial condition x(0) = 
ẋ(0) = 0. xp = 1/5, xh = e−t(a cos(2t) + b sin(2t)). With x = xp + xh, x(0) = 0 implies that 
a = −1/5. Then ẋ = e−t((−a + 2b) cos(2t) + (−2a − b) sin(2t)) so 0 = ẋ(0) = (−a + 2b), 
which implies b = 1/10: v = (1/5) − (1/10)e−t(2 cos(2t) + sin(2t)) for t > 0, v = 0 for −
t < 0. 

d3x 
[2] For t > 0 the unit step responses satisfies = 1, x(0) = ẋ(0) = ẍ(0) = 0: so v = t3/6 

dt3 

for t > 0, v = 0 for t < 0. 

(ii) [6] The unit impulse responses can be obtained directly, or by differentiating the unit 
−kt/2step responses. They are: for t > 0, w = (1/2)e ; w = (1/2)e−t sin(2t); w = t2/2. 

Graphs omitted from this solution sheet, but count 1 point each. The main points: In the 
first one, v(0+) = 0 and v(t) → 1/k as t → ∞; and w(0+) = 1/2. In the second one, 
v(0) = v̇(0) = 0 and v(t) oscillates around the value 1/5 and converges to 1/5 as t → ∞; 
w(0+) = 0, ẇ(0+) = 1, and w(t) is a damped sinusoid. 


