18.03 Problem Set 6 Solutions: Part 11

Each problem is worth 16 points, spread across Parts I and II. Part I values: 22: 7C-1, 3
pts; 7C-2, 1 pt. 23: 4 pts. 24: 4 pts.
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(b) (i) [2] Method I: For n > 0, a, = 5 t cos -5 dt. Integrate by parts: u = t,
0
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dv = cos (7) dt, du = dt, v = (2/nm)sin (T)
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The values of the cosine alternate between —1 (for n odd) and +1 (for n even), so a, =
—8/n*r? for n odd and a,, = 0 for n even. Of course aq is twice the average value of f(t),

which is 0: f(t) = —% (cos(mf/?) + w + - )
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Alternatively, in Lecture 22 we computed that the Fourier series of the even periodic function
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g(t) of period 27 which is ¢ between 0 and 7 is g— — (cos(t) +
m

f(t) = %g (g) —1= —% (cos(mf/2) + w L )

A periodic solution to # + w?x = f(t) is thus given by
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2 \w2 — (7/2)2 " 9(w? — (3/2)2) = 25(w? — (57/2)?)
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(ii) [2] When w,, = k7/2 for k an odd integer.

(iii) [2] The smallest such (positive) value is 7/2. For w, just less than this, the term
8 cos(mt/2)
m2 w2 — (7/2)?

(iv) [2] When it exists (i.e. when w, is not an odd multiple of 7/2), the particular solution

z, is periodic of minimal period P = (27)/(7w/2) = 4. In that case, the general solution is

x, + x5, where x;, = acos(wpt) + bsin(w,t). If some integral multiple of the period of z,

is also an integral multiple of the period of xj, then that common number is a period for

xp + xp. The period of zj, is 27 /w,, so what is required is that there are integers k& and [
such that 4k = (27 /w,)l. This is the same as requiring that w,, should be a rational multiple
of m. [This is a tricky problem!]

dominates the sum. This is a very large multiple of cos(7t/2), in phase.



(v) [0] This problem is even trickier (and trickier than I had intended). My point was that
in the case just studied, all solutions are periodic.
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(b) [6] (1) f/(t) = 14+20(t+1)—35(t—1). or
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(ii) ¢'(t) = u(t — 1) — u(t — 3) + 35(t — 2). |
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(iii) B(t) = > o(t—k).

24. (i) [2] For t > 0 the unit step response satisfies 2 + kx = 1 with initial condition
z(0) = 0. z, = 1/k, 2, = ce ™2 x = (1/k)(1 — e *¥/2). The unit step response is
(t) = (1/k)(1 — e */2) for t > 0, v(t) = 0 for t < 0.

2] For t > 0 the unit step response satisfies & + 24 + bz = 1 with initial condition z(0) =
£(0) =0. x, = 1/5, &, = e "(acos(2t) + bsin(2t)). With = x, + z, (0) = 0 implies that
a = —1/5. Then & = e *((—a + 2b) cos(2t) + (—2a — b)sin(2t)) so 0 = (0) = (—a + 2b),
which implies b = —1/10: v = (1/5) — (1/10)e"*(2 cos(2t) + sin(2t)) for t > 0, v = 0 for
t <0.
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[2] For t > 0 the unit step responses satisfies i 1, 2(0) = #(0) = #(0) = 0: so v =t3/6

dt3
fort >0,v=0fort<O0.
(ii) [6] The unit impulse responses can be obtained directly, or by differentiating the unit
step responses. They are: for t > 0, w = (1/2)e /2, w = (1/2)e "t sin(2t); w = t?/2.

Graphs omitted from this solution sheet, but count 1 point each. The main points: In the
first one, v(0+) = 0 and v(t) — 1/k as t — oo; and w(0+) = 1/2. In the second one,
v(0) = v(0) = 0 and wv(t) oscillates around the value 1/5 and converges to 1/5 as t — oo;
w(0+) =0, w(0+) = 1, and w(t) is a damped sinusoid.



