18.03 Problem Set 7 Solutions: Part II

Each problem is worth 16 points, spread across Parts I and II. Part I values: 25: 4 points. 26: 5 points; 27: 8 points.
Comment on I.25, EP 4.1: 7-9: The solution key claims that the integral defining these Laplace transforms converge only for $s>0$ (by which is meant $\operatorname{Re}(s)>0$), but this is wrong: these integrals converge for all s, since for $t>2$ the functions being integrated are zero so the improper integral certainly has a limit. More about this when we talk about poles.
25. (a) [4] Write out both sides. You have to use some choices of names for the variables of integration. I'll pick u, v, and x, y :

$$
\begin{aligned}
& ((f * g) * h)(t)=\int_{0}^{t}(f * g)(t-u) h(u) d u=\int_{0}^{t} \int_{0}^{t-u} f(t-u-v) g(v) h(u) d v d u \\
& (f *(g * h))(t)=\int_{0}^{t} f(t-x)(g * h)(x) d x=\int_{0}^{t} \int_{0}^{x} f(t-x) g(x-y) h(y) d y d x
\end{aligned}
$$

Matching what f, g, and h are being applied to suggests the change of variables $u=y$, $v=x-y$. In the first integral, then, replace u by y. In the inside integral, y is fixed, so $d v=d x$ and we can rewrite the first integral as $\int_{0}^{t} \int_{y}^{t} f(t-x) g(x-y) h(y) d x d y$. Now we have to reverse the order of integration, and this gives us the second integral.
(b) [1] $w(t) * u(t)=\int_{0}^{t} w(t)$ by definition of convolution. On the other hand, $w(t) * q(t)$ is the system response (from rest initial conditions) to the input signal $q(t)$; so this must be the unit step response.
(c) (i) $[2] \sin (0)=0$ and $\sin ^{\prime}(0) \neq 0$, so we expect a second order system. The weight function is (for $t>0$) a homogeneous solution, and $x=\sin (t)$ is a solution to $\ddot{x}+x=0$. The "mass" is 1 here, leading to the correct value $\sin ^{\prime}(0)=1$.
So we must solve $\ddot{x}+x=\sin (t)$. This is the imaginary part of $\ddot{z}+z=e^{i t}$. The characteristic polynomial $s^{2}+1$ has i as a root, so we are in resonance. The Resonant Response Formula then gives $z_{p}=t e^{i t} /(2 i)$, which has imaginary part $x_{p}=-(t / 2) \cos t$. This has $x(0)=0$, so let's just check to see what $\dot{x}_{p}(0)$ is-maybe we have already hit on the solution with rest initial conditions. $\dot{x}_{p}=(t / 2) \sin t-(1 / 2) \cos t$, and $\dot{x}(0)=-1 / 2$: so we have to add a homogeneous solution with $x_{h}(0)=0$ and $\dot{x}_{h}(0)=1 / 2$. $(1 / 2) \sin t$ does the trick: the solution is, for $t>0, x=(1 / 2)(-t \cos t+\sin t)$.
(ii) [2] $\sin (t) * \sin (t)=\int_{0}^{t} \sin (t-\tau) \sin (\tau) d \tau$. To go on, use the sine difference formula $\sin (t-\tau)=\sin t \cos \tau-\cos t \sin \tau:$

$$
\cdots=\sin t \int_{0}^{t} \cos \tau \sin \tau d \tau-\cos t \int_{0}^{t} \sin ^{2} \tau d \tau
$$

Next $\sin ^{2} \tau=\frac{1-\cos (2 \tau)}{2}$, so

$$
\cdots=\sin t\left[\frac{\sin ^{2} \tau}{2}\right]_{0}^{t}-\cos t\left[\frac{\tau}{2}\right]_{0}^{t}+\cos t\left[\frac{\sin (2 \tau)}{4}\right]_{0}^{t}=\frac{\sin ^{3} t}{2}-(\cos t) \frac{t}{2}+(\cos t) \frac{\sin (2 t)}{4}
$$

[This expression has two terms not present in the result from (i). But
$\frac{\sin ^{3} t}{2}+(\cos t) \frac{\sin (2 t)}{4}=(\sin t) \frac{1-\cos (2 t)}{4}+(\cos t) \frac{\sin (2 t)}{4}=\frac{\sin t}{4}+\frac{\cos (t) \sin (2 t)-\sin (t) \cos (2 t)}{4}$,
and the right numerator is the sine difference formula for $\sin (2 t-t)$, so the two terms combine to give $(\sin t) / 2$ and we recover the same function as in (i).]
(iii) [2] The solution to $p(D) x=\sin t$ (with rest initial conditions) is given by the convolution $\sin t * \sin t=\int_{0}^{t} \sin (t-\tau) \sin (\tau) d \tau$. When $t=k \pi$ for k an odd integer), $\sin (t-\tau)=$ $\sin (k \pi-\tau)=\sin \tau$, so the integrand is $\sin ^{2} \tau$ and is always positive. As k increases you are adding up more and more of the humps, and the solution grows. When k is an even integer, $\sin (k \pi-\tau)=-\sin \tau$, so we aren integrating $-\sin ^{2} \tau$; the integral is negative and it grows as k grows. In sum, the flipped weight function comes into synchrony with the signal from time to time, producing large system response.
(iv) [1] From the discussion in (iii), it seems likely that the maxima occur at $t=k \pi$ for k an odd integer. Let's see: in (i) we computed $\dot{x}_{p}=(t / 2) \sin t-(1 / 2) \cos t$, so $\dot{x}=(t / 2) \sin t$. This is zero when t is an integral multiple of π, and the extrema alternate between maxima and minima.
26. (a) [3] $G(s)=\int_{0}^{\infty} f(a t) e^{-s t} d t$. Make a change of variables: $u=a t, d u=a d t$, $\int_{0}^{\infty} f(u) e^{-s(u / a)}(1 / a) d u$. Pull the $1 / a$ outside and recognize what is left as $F(s / a)$: so $G(s)=(1 / a) F(s / a)$. As a check, with $f(t)=e^{t}, g(t)=e^{a t}$, so $F(s)=1 /(s-1)$ and $G(s)=1 /(s-a)$. Well, $\frac{1}{a} F(s / a)=\frac{1}{a((s / a)-1)}=\frac{1}{s-a}=G(s)$.
(b) [3] With $f(t)=u(t), F(s)=1 / s$, so $L[\delta(t)]=s F(s)-f(0+)=s / s-1=0$. The problem is that (iii) is only true if $f^{\prime}(t)$ means the ordinary derivative rather than the generalized derivative $f(t)$ is continuous for $t>0$. The ordinary derivative of $u(t)$ is zero, and is true that $L[0]=s F(s)=1$.
(c) [3] If $f(t)$ is continuous and piecewise differentiable, then the generalized derivative is $f^{\prime}(t)=\left(f^{\prime}\right)_{r}(t)+f(0+) \delta(t)$, where $\left(f^{\prime}\right)_{r}(t)$ is the ordinary derivative. Thus $s F(s)=$ $L\left[f^{\prime}(t)\right]=L\left[\left(f^{\prime}\right)_{r}(t)+f(0+) \delta(t)\right)=L\left[\left(f^{\prime}\right)_{r}(t)\right]+f(0+)$, so $L\left[\left(f^{\prime}\right)_{r}(t)\right]=s F(s)-f(0+)$.
(d) $[2] f^{\prime}(t)=\delta(t)-\delta(t-1)$ and $L[\delta(t)-\delta(t-1)]=1-e^{-s}$. On the other hand, $F(s)=(1 / s)-\left(e^{-s} / s\right)$ (using $L[u(t)]=1 / s$ and the s-shift rule), so $s F(s)=1-e^{-s}$.
27. [8] Since $L[t f(t)]=-F^{\prime}(s)$,

$$
L[t \cos (\omega t)]=-\frac{d}{d s} \frac{s}{s^{2}+\omega^{2}}=\frac{s^{2}-\omega^{2}}{\left(s^{2}+\omega^{2}\right)^{2}} \quad \text { and } \quad L[t \sin (\omega t)]=\frac{2 \omega s}{\left(s^{2}+\omega^{2}\right)^{2}}
$$

Thus $L^{-1}\left[\frac{s}{\left(s^{2}+\omega^{2}\right)^{2}}\right]=\frac{t \sin (\omega t)}{2 \omega}$. For the other we use $L[\sin (\omega t)]=\frac{\omega}{s^{2}+\omega^{2}}=\frac{\omega\left(s^{2}+\omega^{2}\right)}{\left(s^{2}+\omega^{2}\right)^{2}}$ again to cancel the s^{2} term from the numerator: $\left.L[\sin (\omega t)-\omega t \cos (\omega t))\right]=\frac{2 \omega^{3}}{\left(s^{2}+\omega^{2}\right)^{2}}$, and $L^{-1}\left[\frac{1}{\left(s^{2}+\omega^{2}\right)^{2}}\right]=\frac{\sin (\omega t)}{2 \omega^{3}}-\frac{t \cos (\omega t)}{2 \omega^{2}}$.

