18.03 Hour Exam I Solutions: March 1, 2006

1. (a) $\dot{T}=-k T$ off the stove; this has solution $T=C e^{-k t}$. Thus $C / 2=(1 / 2) T(0)=T(10 \ln 2)=$ $C e^{-k \cdot 10 \ln 2}=C(1 / 2)^{10 k}$ and so $10 k=1$ or $k=1 / 10$. On the stove the ODE is $\dot{T}=-(1 / 10) T+8$.
(b)

k	x_{k}	y_{k}	$A_{k}=x_{k}+y_{k}$	$h A_{k}=A_{k}$
0	0	0	0	0
1	1	0	1	1
2	2	1		

So $y(2)$ is approximately 1 . Since $y_{1}=0<$ $A_{1}=1$, the vector field has been rising under that segment, and the estimate is too low.
(a) The top curve is the solution through $(0,0)$.
(b) The lower curve is the separatrix: solutions above it grow for x large, solutions below it do not. [In fact, solutions below it reach $-\infty$ in finite time. The separatrix is a solution itself, the only solution which is always falling and which is defined for all large x.]
(c) The graphed solution is trapped by the funnel having the nullcline as its upper fence, so $y(50)$ is very near to $\sqrt{100}=10$. Since it's approaching from below, the estimate is (very slightly) high.
3. The standard form is $\dot{x}-x=2 t e^{t}$. The homogeneous solution is e^{t}, so we substitute $x=e^{t} u$: $\dot{x}=e^{t} u+e^{t} \dot{u}$, so $2 t e^{t}=\dot{x}-x=e^{t} \dot{u}$ or $\dot{u}=2 t$. This integrates to $u=t^{2}+c$, so $x=t^{2} e^{t}+c e^{t}$. Since only one solution was asked for we can take $c=0$ or anything else.
Alternatively, e^{-t} is an integrating factor, and $2 t=e^{-t} \cdot 2 t e^{t}=e^{-t}(\dot{x}-x)=\frac{d}{d t} e^{-t} x$ so $e^{-t} x=\int 2 t d t=t^{2}+c$ or $x=\left(t^{2}+c\right) e^{t}$. Again c can be anything.
4. First solve the complex-valued equation $\dot{z}-2 z=4 e^{3 i t}$. This can be done using integrating factors or variation of parameters, or by trying $z_{p}=A e^{3 i t}$ and solving for A : $A 3 i e^{3 i t}-2 A e^{3 i t}=4 e^{3 i t}$ implies $A=4 /(3 i-2)$.
Thus $z_{p}=\frac{4}{-2+3 i} e^{3 i t}=\frac{4(-2-3 i)}{13} e^{3 i t}$, whose real part is $x_{p}=(4 / 13)(-2 \cos (3 t)+3 \sin (3 t))$.
5. (a) The magnitude of i is 1 , so the magnitude of each of its cube roots is 1 . The argument of i is $\pi / 2$, so the argument of one cube root is $\pi / 6$. The others differ by $2 \pi / 3$ and $4 \pi / 3$ and so are $5 \pi / 6$ and $9 \pi / 6=3 \pi / 2$. The last gives $-i$, whose cube is indeed i. The others give $(\sqrt{3}+i) / 2$ and $(-\sqrt{3}+i) / 2$.
(b) $P=2 \pi / \omega=2 \pi / \pi=2$.
(c) A is the length of the segment joining $(0,0)$ to $(-2,2): 2 \sqrt{2}$.
(d) ϕ is the polar angle of $(-2,2)$, which is $3 \pi / 4$.
(e) $t_{0}=(P / 2 \pi) \phi=(1 / \pi)(3 \pi / 4)=3 / 4$.
6. (a)

(b) The maximum value of $g(y)=-y^{2}+$ $4 y$ is 4 (at $y=2$), so $\dot{y}=-y^{2}+4 y-4$ has a semi-stable critical point at $y=2$ and no larger harvest rate leads to any critical points. The largest harvest rate is 4 tons per week.
(c) $\dot{y}=-y^{2}+4 y-3$ has critical points at the roots of $y^{2}-4 y+3$, namely at $y=1$ and $y=3$. The critical point at $y=1$ is unstable and can't be maintained over a long period of time; so the farmer must have $y=3$.

