18.03 Hour Exam II Solutions: March 22, 2006

1. (a) The characteristic polynomial $p(s)=s^{2}+6 s+k$ has roots $-3 \pm \sqrt{9-k}$. The equation is underdamped if the roots are not real, and this happens for $k>9$.
(b) This must be an underdamped equation, with a decaying sinusoidal solution. The zeros happen every $P / 2=\pi / \omega_{d}$ time units, so $\omega_{d}=2$. But $\omega_{d}=\sqrt{k-9}$, so $k-9=4$ and $k=13$.
2. (a) This happens only when one of the roots of the characteristic polynomial has a positive real part (or is repeated with nonnegative real part). Thus $k \leq 9$ to make the roots real. The term $\sqrt{9-k}$ must be at least 3 to make one of the roots positive: so $k \leq 0 . k=0$ leads to roots $0,-6 ; 0$ is not repeated so the solutions do not grow. We must have $k<0$.
(b) A particular solution is $x_{p}=1$ and since the roots of the characteristic polynomial are $-3 \pm 2 i$ the general homogeneous solution is $x_{h}=e^{-3 t}(a \cos (2 t)+b \sin (2 t))$. The initial condition requires $x_{h}(0)=0, \dot{x}_{h}(0)=1$. The first gives $a=0$, and then $\dot{x}_{h}=$ $b e^{-3 t}(2 \cos (2 t)-3 \sin (2 t))$, so $1=\dot{x}_{h}(0)=2 b$ and $b=1 / 2: x=1+(1 / 2) e^{-3 t} \sin (2 t)$.
3. (a) $p(i \omega)=\left(13-\omega^{2}\right)+6 i \omega$ so the amplitude of the sinusoidal solution is $1 /|p(i \omega)|=$ $1 / \sqrt{\left(13-\omega^{2}\right)^{2}+36 \omega^{2}}$.
(b) The phase lag is the argument of $p(i \omega)$. It's 90° when $p(i \omega)$ is purely imaginary (with positive imaginary part). This happens when $\omega=\sqrt{13}$.
4. (a) $p(-1)=1-6+13=8$ so $x_{p}=e^{-t} / 8$.
(b)

13$]$	x	$=$	$a t$	+	b
$6]$	\dot{x}	$=$	0	+	a
$1]$	\ddot{x}		0	+	0
	$13 t+19$		$13 a t$	+	$(6 a+13 b)$

so $a=1$ and $13 b=19-6=13$ or $b=1: x_{p}=t+1$.
5. This is the real part of $\ddot{z}+6 \dot{z}+13 z=e^{(-3+2 i) t}$. The roots of the characteristic polyomial are $-3 \pm 2 i$, so the Exponential Response Formula fails and we must use the Resonant Response formula: $p^{\prime}(s)=2 s+6, p^{\prime}(-3+2 i)=2(-3+2 i)+6=4 i$, so $z_{p}=t e^{(-3+2 i) t} /(4 i)=-(i t / 4) e^{-3 t} e^{2 i t}$ and $x_{p}=(t / 4) e^{-3 t} \sin (2 t)$.

