18.03 Study Guide and Practice Hour Exam II, March, 2006

I. Study guide.

Homogeneous equations. The second order linear ODE $m \ddot{x}+b \dot{x}+k x=q(t)$ models a spring/mass/dashpot system, where an external force $q(t)$ is acting on the mass. We have always assumed m, b, and k are constant in time. The characteristic polynomial is $p(s)=m s^{2}+b s+k$, and the operator $p(D)=m D^{2}+b D+k I$ is a second order (if $m \neq 0$) LTI (linear time invariant, i.e. linear constant coefficient) differential operator. The equation is homogeneous if $q(t)=0$. Solutions then are given by the following table, in which we suppose $m=1$ (by dividing through by it if need be) and r_{1} and r_{2} are the roots of $p(s)$.

Name	Overdamped	Critically Damped	Underdamped
Roots	$r_{1} \neq r_{2}$ real	$r_{1}=r_{2}$	$r_{1}=\overline{r_{2}}$ not real
Condition	$b^{2}>4 k$	$b^{2}=4 k$	$b^{2}<4 k$
Gen Real Sol	$c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$	$\left(c_{1} t+c_{2}\right) e^{r_{1} t}$	$e^{-b t / 2}\left(c_{1} \cos \left(\omega_{d} t\right)+c_{2} \sin \left(\omega_{d} t\right)\right)$
		$=A e^{-b t / 2} \cos \left(\omega_{d} t-\phi\right)$	

The names are only really appropriate when $k, b \geq 0$. In this case, $\operatorname{Re} r_{1,2} \leq 0$, and Re $r_{1,2}<0$ if $k>0$ and $b>0$. In that case all these solutions die off as $t \rightarrow \infty$. In the underdamped case, $\omega_{d}=\sqrt{k-(b / 2)^{2}}$ is the damped circular frequency. The two forms of the general solution in the nonreal root case are related by the standard triangle: A, ϕ are the polar coordinates of the point $\left(c_{1}, c_{2}\right)$ (so $A=\sqrt{c_{1}^{2}+c_{2}^{2}}$ and $\left.\tan \phi=c_{2} / c_{1}\right)$.
If $p(D)$ is a second order LTI operator and x_{1} and x_{2} is any pair of solutions to $p(D) x=0$ such that neither is a multiple of the other, then the general solution to $p(D) x=0$ is given by $c_{1} x_{1}+c_{2} x_{2}$ for c_{1}, c_{2} constants. Such a pair of solutions is called "basic." For any initial condition $x(a), \dot{x}(a)$, one can solve for c_{1} and c_{2}. This process is very easy if x_{1}, x_{2} is "normalized at $t=a, " x_{1}(a)=1, \dot{x}_{1}(a)=0, x_{2}(a)=0, \dot{x}_{2}(a)=1$. Then $x=x(a) x_{1}+\dot{x}(a) x_{2}$. Example: $\cos \left(\omega_{n} t\right),\left(1 / \omega_{n}\right) \sin \left(\omega_{n} t\right)$ is a normalized pair of solutions to the harmonic oscillator $\ddot{x}+\omega_{n}^{2} x=0$.

The key to solving homogeneous constant coefficient linear equations is to look for exponential solutions. If $c \neq 0, c e^{r t}$ is a solution to $p(D) x=0$ exactly when r is a root of $p(s), p(r)=0$. Usually a degree n polynomial $p(s)$ has n distinct complex roots. When this happens, there are n distinct nonzero exponential solutions for $p(D) x=0$, and the general solution is a linear combination of them.
Inhomogeneous equations. The superposition principle states that the general solution to $p(D) x=q(t)$ is given by $x=x_{p}+x_{h}$ where x_{p} is any solution to $p(D) x=q(t)$ and x_{h} is the general solution to $p(D) x=0$ (called by EP the complementary solution). Also, if $p(D) x_{1}=q_{1}(t)$ and $p(D) x_{2}=q_{2}(t)$, then $p(D) x=c_{1} q_{1}(t)+c_{2} q_{2}(t)$ if $x(t)=c_{1} x_{1}+c_{2} x_{2}$.
We found particular solutions x_{p} for various different input signals $q(t)$. These methods work for any $p(D)$.
(1) The Exponential response formula ERF: A solution to $p(D) x=e^{r t}$ is given by $x_{p}=e^{r t} / p(r)$, as long as $p(r) \neq 0$.
Application: To solve $p(D) x=q(t)$ with $q(t)=\cos (\omega t)$ or $\sin (\omega t)$, write down the new ODE $p(D) z=e^{i \omega t}$; solve it using ERF; and extract the real (or if the input signal is sine, the imaginary part). Case: $\ddot{x}+\omega_{n}^{2} x=\cos (\omega t)$ has solution $x_{p}=\cos (\omega t) /\left(\omega_{n}^{2}-\omega^{2}\right)$ (and same with sine), as long as $\omega \neq \omega_{n}$. Case: if b and k are positive then there is just one sinusoidal solution to $\ddot{x}+b \dot{x}+k x=F \cos (\omega t)$. It is given by $A \cos (\omega t-\phi)$ where A and $-\phi$ are the polar coordinates of the "complex gain" $W(i \omega)=F / p(i \omega)$; that is, $W(i \omega)=A e^{-i \phi}$.
More generally, if $q(t)=e^{a t} \cos (\omega t)$ or $e^{a t} \sin (\omega t)$, solve $p(D) z=e^{(a+i \omega) t}$ and continue.
(2) Undetermined coefficients: If $q(t)$ is polynomial of degree at most k, and $p(0) \neq 0$, then there is exactly one solution of $p(D) x=q(t)$ which is polynomial of degree at most k. Case: if $q(t)=c$, a constant, then $x=c / p(0)$ is a solution.
(3) "Resonance" means that the exponent r is a root of $p(s)$, so the ERF fails. In that case we have the Resonant Response Formula: If $p(r)=0$ but $p^{\prime}(r) \neq 0$, then $p(D) x=e^{r t}$ has as solution $x_{p}=t e^{r t} / p^{\prime}(r)$. See the Supplementary Notes or Notes and Exercises for a more general statement.
Application: $\ddot{x}+\omega_{n}^{2} x=\cos \left(\omega_{n} t\right)$ has solution $x_{p}=\left(t / 2 \omega_{n}\right) \sin \left(\omega_{n} t\right)$. Case: $\ddot{x}+b \dot{x}=1$. Since $e^{r t}=1$ if $r=0$, we find $x_{p}=t / b$ as long as $b \neq 0$. In any case, solutions grow faster that the exponential growth/decay predicted by the real part of the root.
(4) The exponential shift law ESL: $p(D)\left(e^{r t} u\right)=e^{r t} p(D+r I) u$. If $q(t)=e^{r t} q_{1}(t)$ where $q_{1}(t)$ is some other function, then $x=e^{r t} u$ is a solution to $p(D) x=q(t)$ provided that u is a solution to $p(D-r I) u=q_{1}(t)$. ESL eliminates exponentials. Application: if $b \neq 0$, a solution to $\ddot{x}+\omega^{2} x=\cos (\omega t)$ is $x_{p}=(1 / 2 \omega) t \sin (\omega t)$. The function $q_{1}(t)$ might be polynomial for example.
Putting all this together, we have actually proven the following theorem:
Theorem. If $q(t)$ is a linear combination of products of polynomials and exponential functions, then all solutions to $p(D) x=q(t)$ are too.

Here we mean to include complex linear combinations of products of polynomials with complex coefficients and complex exponential functions. For example $\sin (t)=\left(e^{i t}-\right.$ $\left.i e^{-i t}\right) / 2 i$ is included.

II. Practice Hour Exams.

Exponential Response Formula:
$x_{p}=A e^{r t} / p(r)$ solves $p(D) x=A e^{r t}$ provided $p(r) \neq 0$.

Resonant Response Formula:

$x_{p}=A t e^{r t} / p^{\prime}(r)$ solves $p(D) x=A e^{r t}$ provided $p(r)=0$ and $p^{\prime}(r) \neq 0$.

Exponential Shift Law:
$p(D)\left(e^{r t} u\right)=e^{r t} p(D+r I) u$.

First Practice Exam (50 minutes)

1. A spring/mass/dashpot system is modeled by $2 \ddot{x}+2 b \dot{x}+4 x=-10$.
(a) What is the steady state (constant) solution?
(b) For what values of the damping constant b does the system "ring," i.e. oscillate?
(c) When it does oscillate, what is the pseudoperiod (in terms of b)?
2. Find a particular solution to $\ddot{x}+4 \dot{x}+4 x=e^{-2 t} \cos (2 t)$.
3. Find the solution to $\ddot{x}+4 \dot{x}+4 x=4$ such that $x(0)=0$ and $\dot{x}(0)=0$.
4. Find a particular solution to $\ddot{x}+4 \dot{x}+4 x=8 t^{2}+8$.
5. (a) Find the amplitude of the sinusoidal solution to $\ddot{x}+2 \dot{x}+2 x=\cos (\omega t)$, as a function of the input signal circular frequency ω.
(b) For what value of ω is the phase lag zero?
(c) For what value of ω is the phase lag 90° ?

Second Practice Exam (90 minutes?)

1. Find ω, A, and ϕ such that $x_{p}=A \cos (\omega t-\phi)$ is a solution to $\ddot{x}+2 \dot{x}+15 x=2 \cos (3 t)$.
2. (a) For what value of ω does resonance occur in $\ddot{x}+2 x=\cos (\omega t)$?
(b) For what value of c does critical damping occur in $\ddot{x}+c \dot{x}+4 x=0$?
3. (a) What is the general real solution of $\ddot{x}+4 \dot{x}+5 x=0$?
(b) Find a particular solution to $\ddot{x}+\dot{x}+2 x=2 t^{2}+2 t+4$.
4. (a) If $e^{-2 t}+2 e^{-t}$ is a solution to $\ddot{x}+c \dot{x}+k x=0$, what are the constants c and k ?
(b) Same question if $t e^{-t}$ is a solution instead.
(c) What are the exponential solutions of $\ddot{x}+2 \dot{x}+2 x=0$? Find the general real solution. What is the damping type of this equation?
5. Suppose $\ddot{x}+4 x=e^{-t} t^{10}$. For a suitable constant r, if we write x as $e^{r t} u$ then u satisfies a differential equation of the form $\ddot{u}+c \dot{u}+k u=t^{10}$. What is r, and what is this new ODE? (Don't try to solve it!)
6. True or False: For appropriate c, k, and q, both e^{-t} and $\sin (t)$ are solutions to the single equation $\ddot{x}+c \dot{x}+k x=q(t)$.
7. (a) The substitution $x=e^{r t} u$ (for an appropriate value of r) lets you replace the ODE $\ddot{x}+2 \dot{x}+2 x=t e^{-t} \sin (t)$ with a different ODE (for u) having right hand side t. What is the new ODE?
(b) Find a solution of $\dot{x}+x=t \sin t$ by replacing it by a complex equation and solving using the substitution $x=e^{r t} u$ for appropriate r.
(c) Find a polynomial solution of $\ddot{x}+x=t^{2}+1$. What is the general solution?
8. (a) Find a periodic solution to $\ddot{x}+2 \dot{x}+2 x=1+2 \cos (t)$.
(b) What is the amplitude of the sinusoidal solution to $\ddot{x}+2 \dot{x}+2 x=2 \cos (t)$? What is the phase lag ϕ ?
(c) Find a solution to $\ddot{x}-4 x=e^{2 t}$.

III. Solutions.

First Practice Exam

1. (a) $x=-5 / 2$.
(b) The characteristic polynomial has roots $-b / 2 \pm \sqrt{(b / 2)^{2}-2}$. They are complex as long as $(b / 2)^{2}<2$, i.e. $|b|<2 \sqrt{2}$.
(c) $\omega_{d}=\sqrt{2-(b / 2)^{2}}$ so $P_{d}=2 \pi / \omega_{d}=2 \pi / \sqrt{2-(b / 2)^{2}}$.
2. The equation is the real part of $p(D) z=e^{(-2+2 i) t}$, where $p(s)=s^{2}+4 s+4 \cdot p(-2+2 i)=$ $(-2+2 i)^{2}+4(-2+2 i)+4=-4$, so by the ERF $z_{p}=e^{(-2+2 i) t} /(-4)$ and so $x_{p}=\operatorname{Re} z_{p}=$ $-(1 / 4) e^{-2 t} \cos (2 t)$. Other methods work too: try $x_{p}=e^{-2 t}(a \cos (2 t)+b \sin (2 t))$; or use ESL to eliminate $e^{-2 t}$.
3. $x_{p}=1$, so $x_{p}(0)=1$ and $\dot{x}_{p}(0)=0$. For $x=x_{p}+x_{h}$ to satisfy the given initial condition we need $x_{h}(0)=-1$ and $\dot{x}_{h}(0)=0 . p(s)=(s+2)^{2}$ so the general homogeneous solution is $x_{h}=\left(c_{1} t+c_{2}\right) e^{-2 t}$. $\dot{x}_{h}=\left(-2 c_{1} t+\left(c_{1}-2 c_{2}\right)\right) e^{-2 t}$, so $x_{h}(0)=c_{2}, \dot{x}_{h}(0)=c_{1}-2 c_{2}$. This gives $c_{2}=-1$ and $c_{1}=-2$, so $x=1+(-2 t-1) e^{-2 t}$.
4. $x=a t^{2}+b t+c, \dot{x}=2 a t+b, \ddot{x}=2 a$, so we want a, b, c such that $8 t^{2}+8=$ $4 a t^{2}+(4 b+8 a) t+(4 c+4 b+2 a)$. This gives $a=2$, then $b=-4$, then $c=5: x_{p}=2 t^{2}-4 t+5$.
5. (a) $x_{p}=\operatorname{Re} e^{i \omega t} / p(i \omega)$ has amplitude $|1 / p(i \omega)| \cdot p(i \omega)=(i \omega)^{2}+2 i \omega+2=\left(2-\omega^{2}\right)+2 i \omega$ so $A=|1 / p(i \omega)|=1 / \sqrt{\left(2-\omega^{2}\right)^{2}+4 \omega^{2}}$.
(b) Zero phase lag occurs when $p(i \omega)$ is real (and positive), which happens only when $\omega=0$.
(c) Phase lag of 90° occurs when $p(i \omega)$ is purely imaginary with positive imaginary part. This happens only when $\omega^{2}=2$ and $\omega>0$, i.e. $\omega=\sqrt{2}$.

Second Practice Exam

1. Start by writing down a complex equation having this as its real part: $p(D) z=2 e^{3 i t}$, with $p(s)=s^{2}+2 s+15$. By the key formula this has solution $z_{p}=(2 / p(3 i)) e^{3 i t}$. $p(3 i)=-9+6 i+15=6+6 i$. The clever way to solve the problem is to switch to polar coordinates right away: $p(3 i)=(6 \sqrt{2}) e^{i \pi / 4}$, so $z_{p}=(\sqrt{2} / 6) e^{i(3 t-\pi / 4)}$. The original equation has solution $x_{p}=(\sqrt{2} / 6) \cos (3 t-\pi / 4)$. Thus $\omega=3, A=\sqrt{2} / 6$, and $\phi=\pi / 4$.
2. (a) It occurs when ω equals the natural frequency of the system, which is $\sqrt{2}$.
(b) It occurs when the two roots of the characteristic polynomial are equal, which is when $c=4$ (so both roots are -2)
3. (a) The roots of the characteristic polynomial $p(s)=s^{2}+4 s+5$ are $r=-2 \pm i$, so $x=e^{-2 t}(a \cos t+b \sin t)$.
(b) Try $x=a t^{2}+b t+c$, so $\ddot{x}+\dot{x}+2 x=(2 a)+(2 a t+b)+2\left(a t^{2}+b t+c\right)=2 a t^{2}+$ $(2 a+2 b) t+(2 a+b+2 c)$ Equating this with $2 t^{2}+2 t+4$ gives, successively, $a=1, b=0$, $c=1$: so $x_{p}=t^{2}+1$. This is easy to check.
4. (a) The only way this sum can occur is if both $e^{-2 t}$ and e^{-t} are solutions, so the roots of $p(s)=s^{2}+c s+k$ are -1 and $-2: p(s)=(s-(-1))(s-(-2))=s^{2}+3 s+2:$ so $c=3$, $k=2$.
(b) The only way $t e^{-t}$ can be a solution is if -1 occurs as a double root: so $p(s)=$ $(s+1)^{2}=s^{2}+2 s+1$: so $c=2, k=1$.
(c) The roots of $p(s)=s^{2}+2 s+2$ are $-1 \pm i$, so the exponential solutions are $e^{(-1+i) t}$ and $e^{(-1-i) t}$ (and their constant multiples). The general real solution is $e^{-t}(a \cos t+b \sin t)$. This is an underdamped equation.
5. Take $r=-1$ and use ESL: $e^{-t} t^{10}=p(D)\left(e^{-t} u\right)=e^{-t} p(D-I) u$, so $p(D-I) u=t^{10}$. $p(s)=s^{2}+4$, so $p(s-1)=(s-1)^{2}+4=s^{2}-2 s+5$, and the equation is $\ddot{u}-2 \dot{u}+5 u=t^{10}$.
Or substitute and compute directly.
6. False. Reason: If these are system responses to the same signal, then their difference must be a system response to the null signal, that is, a homogeneous solution. But such solutions are linear combinations of two exponentials (or, in the case of a repeated root, linear combinations of an expnential and t time the same exponential). $\sin (t)-e^{-t}$ is not of this form.
7. (a) The equation is the imaginary part of $p(D) z=t e^{(-1+i) t}$ with $p(s)=s^{2}+2 s+2$. Take $z=e^{(-1+i) t} u$ and use ESL: $p(D) z=p(D)\left(e^{(-1+i) t} u\right)=e^{(-1+i) t} p(D+(-1+i) I) u$. Equating and canceling the exponential gives $p(D+(-1+i) I) u=t$. We compute $p(D+(-1+i) I)=(D+(-1+i) I)^{2}+2(D+(-1+i) I)+2 I=D^{2}+2 i D$, so the new ODE is $\ddot{u}+2 i \dot{u}=t$. This can also be done by direct substitution.
(b) This equation is the imaginary part of $p(D) z=\dot{z}+z=t e^{i t}$. Take $z=e^{i t} u$ apply ESL: $p(D) z=p(D)\left(e^{i t} u\right)=e^{i t} p(D+i I) u$. Equating and canceling the exponential gives $p(D+i I) u=t$. We compute $p(D+i I)=(D+i I)+I=D+(1+i) I$, so the equation is $\dot{u}+(1+i) u=t$. This can be obtained also by direct substitution. Use undetermined coefficients, with $u=a t+b: \dot{u}=a$, so the equation reads $a+(1+i)(a t+b)=t$, so $a=1 /(1+i)=(1-i) / 2$ and $b=-a /(1+i)=i / 2$. Thus $u_{p}=((1-i) / 2) t+(i / 2)$. Then $z_{p}=(((1-i) / 2) t+(i / 2))(\cos t+i \sin t)$, and $x_{p}=\Im z_{p}=(t / 2)(\sin t-\cos t)+(1 / 2) \cos t$.
(c) Try $x=a t^{2}+b t+c$; $\dot{x}=2 a t+b, \ddot{x}=2 a$, so $\ddot{x}+x=a t^{2}+b t+(c+2 a)$. For this to be equal to $t^{2}+1$ we must have $a=1, b=0$, and so $c=1-2 a=-1: x_{p}=t^{2}-1$. The general solution is $x=\left(t^{2}-1\right)+a \cos t+b \sin t$.
8. (a) Use superposition: the signal 1 has periodic solution given by the constant $1 / 2$. For the other term, once again I recommend replacing the problem with a complex one: $p(D) z=2 e^{i t}$, which has solution $z_{p}=2 e^{i t} / p(i)$ by the Exponential Response Formula. $p(s)=s^{2}+2 s+2$ so $p(i)=-1+2 i+2=1+2 i$ and $z_{p}=(2 /(1+2 i)) e^{i t}=$ $((2-4 i) / 5)(\cos t+i \sin t)$ has real part $x_{p}=(2 / 5) \cos t+(4 / 5) \sin t$. Thus the original problem has a periodic solution $(1 / 2)+(2 / 5) \cos t+(4 / 5) \sin t$.
(b) We just saw that $\ddot{x}+2 \dot{x}+2 x=2 \sin (2 t)$ has for a solution the imaginary part of $(2 / p(i)) e^{i t}$, and that $p(i)=1+2 i$. Write $p(i)=\sqrt{5} e^{i \phi}$, so $\phi=\arctan (2)$. Then $z_{p}=(2 / \sqrt{5}) e^{i(t-\phi)}$, so x_{p} has amplitude $2 / \sqrt{5}$ and phase $\operatorname{lag} \phi=\arctan (2)$. Alternatively, use the usual triangle with sides $2 / 5$ and $4 / 5$ from the final form of the solution to (a).
(c) 2 is a characteristic root here so we can't apply the Exponential Response Formula. We are in a resonance situation, and multiplying by t comes to the rescue: Try $x=A t e^{2 t}$. Then $\dot{x}=A(2 t+1) e^{2 t}, \ddot{x}=A(2(2 t+1)+2) e^{2 t}=A(4 t+4) e^{2 t}$ and $\ddot{x}-4 x=4 A e^{2 t}$. (This can also be done using ESL: $p(D)\left(e^{2 t} A t\right)=e^{2 t} p(D+2 I)(A t)$, and since $p(D)=(D+2 I)(D-$ $2 I), p(D+2 I)=(D+4 I) D$ and $p(D+2 I) A t=(D+4 I) D(A t)=(D+4 I) A=4 A$. Setting this equal to $e^{2 t}$ we find $A=1 / 4$ and $x_{p}=(1 / 4) t e^{2 t}$.
