18.03 Practice Hour Exam III, April, 2006

Properties of the Laplace transform

0. Definition: $\quad \mathcal{L}[f(t)]=F(s)=\int_{0-}^{\infty} f(t) e^{-s t} d t$ for $\operatorname{Re} s \gg 0$.
1. Linearity: $\quad \mathcal{L}[a f(t)+b g(t)]=a F(s)+b G(s)$.
2. Inverse transform: $F(s)$ essentially determines $f(t)$.
3. s-shift rule: $\quad \mathcal{L}\left[e^{a t} f(t)\right]=F(s-a)$.
4. t-shift rule: $\quad \mathcal{L}\left[f_{a}(t)\right]=e^{-a s} F(s), \quad f_{a}(t)=\left\{\begin{array}{ll}f(t-a) & \text { if } t>a \\ 0 & \text { if } t<a\end{array}\right.$.
5. s-derivative rule: $\quad \mathcal{L}[t f(t)]=-F^{\prime}(s)$.
6. t-derivative rule: $\quad \mathcal{L}\left[f^{\prime}(t)\right]=s F(s)-f(0+)$
$\mathcal{L}\left[f^{\prime \prime}(t)\right]=s^{2} F(s)-s f(0+)-f^{\prime}(0+)$
where we ignore singularities in derivatives at $t=0$.
7. Convolution rule: $\quad \mathcal{L}[f(t) * g(t)]=F(s) G(s), f(t) * g(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau$.
8. Weight function: $\mathcal{L}[w(t)]=W(s)=1 / p(s), w(t)$ the unit impulse response.

Formulas for the Laplace transform

$$
\begin{array}{rlrl}
\mathcal{L}[1] & =1 / s, & \mathcal{L}\left[e^{a t}\right] & =1 /(s-a) \\
\mathcal{L}[\cos (\omega t)] & =s /\left(s^{2}+\omega^{2}\right) & , \quad \mathcal{L}[\sin (\omega t)] & =\omega /\left(s^{2}+\omega^{2}\right) \\
\mathcal{L}\left[u_{a}(t)\right] & =e^{-a s} / s, & \mathcal{L}\left[\delta_{a}(t)\right] & =e^{-a s} \\
\mathcal{L}\left[t^{n}\right]=n!/ s^{n+1}
\end{array}
$$

Fourier coefficients

$$
\begin{aligned}
f(t) & =a_{0} / 2+a_{1} \cos (t)+b_{1} \sin (t)+a_{2} \cos (2 t)+b_{2} \sin (2 t)+\cdots \\
a_{m} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (m t) d t, \quad b_{m}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin (m t) d t
\end{aligned}
$$

If $\operatorname{sq}(t)$ is the odd function of period 2π which has value 1 between 0 and π, then

$$
\mathrm{sq}(t)=\frac{4}{\pi}\left(\sin (t)+\frac{\sin (3 t)}{3}+\frac{\sin (5 t)}{5}+\cdots\right) .
$$

First Practice Exam

1. (a) $p(D)$ is an LTI operator, and what we know about it is its weight function (or unit impulse response) $w(t)$. Express the solution to $p(D) x=\sin t$ with rest initial conditions as an integral involving $w(t)$.
(b) and (c) involve a certain LTI differential operator $p(D)$ has weight function (or unit impulse response) given by $w(t)=u(t) e^{-t} \sin (t)$.
(b) What is the corresponding transfer function $W(s)$?
(c) What is the exponential solution of the equation $p(D) x=e^{-2 t}$?
2. In this problem, $X(s)=\frac{4}{s\left(s^{2}+2 s+2\right)}$.
(a) Find a function $x(t)$ having Laplace transform $X(s)$.
(b) Sketch the pole diagram of $X(s)$. Shade the region in which the integral definition of the Laplace transform of $x(t)$ converges.
3. What is the Laplace transform of the solution $x(t)$ to $2 \dot{x}+3 x=\sin t+\delta(t-\pi)$ with initial condition $x(0)=1$? (You are not asked to solve the differential equation.)
4. (a) Find the Fourier series for the function $f(t)$ which is periodic of period 4 and such that $f(t)= \begin{cases}1 & \text { for }-1<t<1, \\ 0 & \text { for } 1<t<3 .\end{cases}$
5. In this problem $f(t)=\sum_{k=1}^{\infty} \frac{\sin (2 k t)}{2^{k}}=\frac{\sin (2 t)}{2}+\frac{\sin (4 t)}{4}+\frac{\sin (6 t)}{8}+\cdots$.
(a) Find the Fourier series expression for a periodic solution x_{p} to $\ddot{x}+\omega_{n}^{2} x=f(t)$.
(b) For what values of ω_{n} (if any) do there fail to be periodic solutions?
(c) Write down a solution to $\ddot{x}+4 x=f(t)$.

Second Practice Exam

1. Let $p(D)$ be the LTI differential operator with transfer function $W(s)=\frac{1}{s^{2}+4 s+8}$.
(a) What is the characteristic polyonomial $p(s)$?
(b) What is the weight function (or unit impulse response) $w(t)$ of this operator $p(D)$?
2. $p(D)$ will continue to be the differential operator with transfer function $W(s)=$ $\frac{1}{s^{2}+4 s+8}$.
(a) What is the Laplace transform $X(s)$ of the solution to $p(D) x=e^{t}$ with initial conditions $x(0)=1, \dot{x}(0)=3$? (You are not asked to find the solution itself!)
(b) Express the solution to $p(D) x=\delta(t-1)$ with rest initial conditions in terms of the weight function w.
3. This problem deals with $X(s)=\frac{1}{s\left(s^{2}+4 s+8\right)}$.
(a) What function $x(t)$ has Laplace transform $X(s)$?
(b) Write down an initial value problem whose solution is this function $x(t)$ for $t>0$. (Don't neglect the initial condition!)
4. (a) Still with regard to the function $X(s)=\frac{1}{s\left(s^{2}+4 s+8\right)}$:

Sketch its pole diagram, and shade in the region where the integral expressing it as the Laplace transform of $x(t)$ converges.
(b) New topic: Compute the convolution product $t * t$.
5. (a) What is the Fourier series of the function $1+\mathrm{sq}(2 t)$, where $\mathrm{sq}(t)$ is the standard squarewave (described on the attached information sheet)?
(b) What is the Fourier series of the generalized function which is odd, of period 2π, and between 0 and π is given by $\delta(t-\pi / 2)$?
6. The sawtooth function of period 2 , given by $f(t)=|t|$ for t between -1 and +1 , has Fourier series

$$
f(t)=\frac{1}{2}-\frac{4}{\pi^{2}} \sum_{k \text { odd }} \frac{\cos (k \pi t)}{k^{2}} .
$$

(a) For a general constant $\omega_{n} \geq 0$, what is the Fourier series of a periodic solution to $\ddot{x}+\omega_{n}^{2} x=f(t)$?
(b) For what values of ω_{n} is the system in resonance with this signal?

Solutions to First Practice Exam

1. (a) $x(t)=\sin (t) * w(t)=\int_{0}^{t} \sin (u) w(t-u) d u$.
(b) $\mathcal{L}[w(t)]=\frac{1}{(s+1)^{2}+1}=\frac{1}{s^{2}+2 s+2}$.
(c) The transfer function evaluated at -2 gives the multiple, by the Exponential Response formula: $W(-2)=1 / 2$, so $x_{p}=(1 / 2) e^{-2 t}$.
2. (a) $\frac{4}{s\left(s^{2}+2 s+2\right)}=\frac{a}{s}+\frac{b(s+1)+c}{(s+1)^{2}+1}$. Cover up the s and set $s=0$ to see $4 / 2=a$. Cover up the $(s+1)^{2}+1$ and set $s=-1+i$ (i.e. $\left.s+1=i\right)$ to see $4 /(-1+i)=b i+c$, i.e. $4(-1-i) / 2=b i+c$ or $b=-2, c=-2$. So $X(s)=\frac{2}{s}-2 \frac{(s+1)+1}{(s+1)^{2}+1}$, which is the Laplace transform of $2-2 e^{-t}(\cos (t)+\sin (t))$.
(b) The poles occur at $s=0$ and at $s=-1 \pm i$. The region of convergence is the right half plane.
3. (a) $2(X(s)-1)+3 X(s)=\frac{1}{s^{2}+1}+e^{-\pi s}$, so $X=\frac{2+1 /\left(s^{2}+1\right)+e^{-\pi s}}{2 s+3}$.
4. $f(t)=\frac{1}{2}+\frac{1}{2} \mathrm{sq}\left(\frac{\pi t}{2}+\frac{\pi}{2}\right)=\frac{1}{2}+\frac{1}{2} \frac{4}{\pi}\left(\sin ((\pi t / 2)+(\pi / 2))+\frac{\sin ((3 \pi t / 2)+(3 \pi / 2))}{3}+\cdots\right)$
$=\frac{1}{2}+\frac{2}{\pi}\left(\cos (\pi t / 2)-\frac{\cos (3 \pi t / 2)}{3}+\frac{\cos (5 \pi t / 2)}{5}-\cdots\right)$
5. (a) $x_{p}=\sum_{k=1}^{\infty} \frac{\sin (2 k t)}{2^{k}\left(\omega_{n}^{2}-4 k^{2}\right)}$.
(b) $\omega_{n}=2,4,6, \ldots$
(c) The equation $\ddot{z}+4 z=e^{2 i t}$ exhibits resonance. The characteristic polynomial $p(s)=$ $s^{2}+4$ has derivative $p^{\prime}(s)=2 s$, and $p^{\prime}(2 i)=4 i$, so $z_{p}=\frac{t e^{2 i t}}{4 i}$ and $\ddot{x}+4 x=\sin (2 t)$ has solution $\operatorname{Im}\left(z_{p}\right)=-\frac{t}{4} \cos (2 t)$. Thus $x_{p}=-\frac{t}{8} \cos (2 t)+\sum_{k=2}^{\infty} \frac{\sin (2 k t)}{2^{k}\left(4-4 k^{2}\right)}$.

Solutions to Second Practice Exam

1. (a) $p(s)=s^{2}+4 s+8$.
(b) $W(s)=1 /\left(s^{2}+4 s+8\right)=(1 / 2)\left(2 /\left((s+2)^{2}+4\right)\right.$ is the Laplace transform of $w(t)=$ $(1 / 2) e^{-2 t} \sin (2 t)$ (for $t>0$; if you have to give it a value for $t<0$, it is zero).
2. (a) $\left(s^{2} X(s)-s-3\right)+4(s X(s)-1)+8 X(s)=1 /(s-1)$, so $X(s)=\frac{(s+7)+1 /(s-1)}{s^{2}+4 s+8}$.
(b) $x(t)=w(t-1)$.
3. (a) $X(s)=1 /\left(s\left(s^{2}+4 s+8\right)\right)=a / s+(b(s+2)+c) /\left((s+2)^{2}+4\right)$. Multiply through by s and set $s=0$ to see $a=1 / 8$. Multiply through by $(s+2)^{2}+4$ and set $s=-2+2 i$ to see $b(2 i)+c=1 /(-2+2 i)=(-1-i) / 4$ or $b=-1 / 8, c=-1 / 4$: so $X(s)=(1 / 8)(1 / s)-(1 / 8)(s+2) /\left((s+2)^{2}+4\right)-(1 / 8) 2 /\left((s+2)^{2}+4\right)$, which is the Laplace transform of $(1 / 8)\left(1-e^{-2 t}(\cos (2 t)+\sin (2 t))\right)$.
(b) This problem has many answers. A really cheap one is $x(t)=(1 / 8)\left(1-e^{-2 t}(\cos (2 t)+\right.$ $\sin (2 t))$): this is a "zeroth order" ODE. Slightly tricker would be to write $\dot{x}=$ the derivative of this, with initial condition $x(0)=0$. These are correct and so acceptable answers, but more expected answers are: $\ddot{x}+4 \dot{x}+8 x=1$ with rest initial conditions (since the standard method of solving $p(D) x=1$ with rest initial conditions leads to $X(s)=1 /(s p(s)))$, or (using $\mathbf{1}(\mathbf{b})) \dot{x}=(1 / 2) e^{-2 t} \sin (2 t)$ with rest initial conditions.
4. (a) There are poles at $s=0$ and at $s=-2 \pm 2 i$. The integral converges for $\operatorname{Re}(s)>0$, to the right of the vertical line through 0 .
(b) $t * t=\int_{0}^{t} u(t-u) d u=\left[t u^{2} / 2-u^{3} / 3\right]_{0}^{t}=t^{3} / 6$. Alternate solution: $\mathcal{L}[t]=1 / s^{2}$ so $\mathcal{L}[t * t]=1 / s^{4}$, which is the Laplace transform of $t^{3} / 6$.
5. (a) $1+\frac{4}{\pi} \sum_{n \text { odd }} \frac{\sin (2 n t)}{n}$.
(b) The function is odd so $a_{n}=0$ for all n. $b_{n}=(2 / \pi) \int_{0}^{\pi} \delta(t-\pi / 2) \sin (n t) d t=(2 / \pi) \sin (\pi n / 2)$. $\sin (\pi n / 2)=0$ for n even, and for odd n alternates between the values 1 and -1 . Thus the series is $(2 / \pi)(\sin (t)-\sin (3 t)+\sin (5 t)-\sin (7 t)+\cdots)$.
6. (a) $\frac{1}{2 \omega_{n}^{2}}-\frac{4}{\pi^{2}} \sum_{k \text { odd }} \frac{\cos (k \pi t)}{k^{2}\left(\omega_{n}^{2}-(k \pi)^{2}\right)}$
(b) Resonance occurs for $\omega_{n}=n \pi$, where n is a positive odd integer.
