BOUNDS FOR LINEAR MTL

Andreas Maurer

ingredients of linear MTL

■ independent random variables $\left(X^{1}, Y^{1}\right), \ldots,\left(X^{m}, Y^{m}\right): \Omega \rightarrow H \times \mathbb{R}$ where H is a Hilbert-space and $\left\|X^{l}\right\| \leq 1$. Here m is the number of tasks.

■ loss functions $\phi^{1}, \ldots, \phi^{m}: \mathbb{R} \times \mathbb{R} \rightarrow[0,1]$ where $\phi^{l}(y,$.$) is 1$-Lipschitz.

- training sample $(\mathbf{X}, \mathbf{Y})=\left(\left(X_{i}^{l}, Y_{i}^{l}\right): 1 \leq l \leq m, 1 \leq i \leq n\right)$ with $\left(X_{i}^{l}, Y_{i}^{l}\right)_{i=1}^{n}$ indep., identically distributed to $\left(X^{l}, Y^{l}\right)$.

■ a hypothesis class \mathcal{F} of linear transformations $V: H \rightarrow \mathbb{R}^{m}$, where the l-th row-vector v^{l} of V is the linear predictor for the l-th task

$$
(V x)_{l}=\left\langle v^{l}, x\right\rangle
$$

objective

Find a transformation $V=\left(v^{1}, \ldots, v^{m}\right) \in \mathcal{F}$ with small task-averaged loss

$$
\operatorname{er}(V)=\frac{1}{m} \sum_{l=1}^{m} \mathbb{E}\left[\phi^{l}\left(Y^{l},\left\langle v^{l}, X^{l}\right\rangle\right)\right] .
$$

Since the distribution of the $\left(X^{l}, Y^{l}\right)$ is unknown, we work on the basis of an empirical estimate

$$
\operatorname{e\hat {r}}(V)(\mathbf{X}, \mathbf{Y})=\frac{1}{m} \sum_{l=1}^{m} \frac{1}{n} \sum_{i=1}^{n} \phi^{l}\left(Y_{i}^{l},\left\langle v^{l}, X_{i}^{l}\right\rangle\right) .
$$

error bound

(Kolchinski+Panchenko, Bartlett+Mendelson, Ando+Zhang)
\mathcal{F} a class of linear transformations $V: H \rightarrow \mathbb{R}^{m}$.
$\forall \delta$ with probability at least $1-\delta$ in the sample (\mathbf{X}, \mathbf{Y}), we have $\forall V \in \mathcal{F}$

$$
\operatorname{er}(V) \leq \operatorname{er}(V)(\mathbf{X}, \mathbf{Y})+\hat{\mathcal{R}}_{n}^{m}(\mathcal{F})(\mathbf{X})+\sqrt{\frac{9 \ln (2 / \delta)}{2 m n}}
$$

Model selection corollary:
If J and D are such that $\forall \mathcal{F}$ we have $\hat{\mathcal{R}}_{n}^{m}(\mathcal{F})(\mathbf{X}) \leq \sup _{V \in \mathcal{F}} J(V) D(\mathbf{X})$ then whp for all $V: H \rightarrow \mathbb{R}^{m}$

$$
\operatorname{er}(V) \leq e \hat{r}(V)(\mathbf{X}, \mathbf{Y})+2 J(V) D(\mathbf{X})+\sqrt{\frac{9 \ln (2 J(V) / \delta)}{2 m n}} .
$$

Multi-task regularization: Impose 'relatedness' or 'similarity' constraints among the task-specific predictors v^{l} for $V=\left(v^{1}, \ldots, v^{m}\right)$.

Rademacher complexity

\mathcal{F} a class of linear transformations $V: H \rightarrow \mathbb{R}^{m}$. σ_{i}^{l} independent random variables, distributed uniformly in $\{-1,1\}$.

$$
\begin{aligned}
\hat{\mathcal{R}}_{n}^{m}(\mathcal{F})(\mathbf{X}) & =E_{\sigma}\left[\sup _{V \in \mathcal{F}} \frac{2}{m n} \sum_{l=1}^{m} \sum_{i=1}^{n} \sigma_{i}^{l}\left\langle v^{l}, X_{i}^{l}\right\rangle\right] \\
& =E_{\sigma}\left[\sup _{V \in \mathcal{F}} \frac{2}{m n} \operatorname{tr}\left(V^{*} W_{\boldsymbol{\sigma}, \mathbf{X}}\right)\right]
\end{aligned}
$$

where $W_{\boldsymbol{\sigma}, \mathbf{X}}: H \rightarrow R^{m}$ is the transformation

$$
\left(W_{\boldsymbol{\sigma}, \mathbf{X}} z\right)_{l}=\left\langle\sum_{i=1}^{n} \sigma_{i}^{l} X_{i}^{l}, z\right\rangle
$$

Hölder's inequality

For a compact operator $A: H \rightarrow H^{\prime}$ define $\|A\|_{p}=\left(\sum_{i} \mu_{i}(A)^{p}\right)^{1 / p}$, where μ_{i} are the singular values of A.

Theorem: For $p^{-1}+q^{-1}=1$ we have $\left|\operatorname{tr}\left(A^{*} B\right)\right| \leq\|A\|_{p}\|B\|_{q}$.

$$
\text { So } \begin{aligned}
\hat{\mathcal{R}}_{n}^{m}(\mathcal{F})(\mathbf{X}) & =E_{\sigma}\left[\sup _{V \in \mathcal{F}} \frac{2}{m n} \operatorname{tr}\left(V^{*} W_{\boldsymbol{\sigma}, \mathbf{X}}\right)\right] \\
& \leq \frac{2}{\sqrt{n}}\left(\sup _{V \in \mathcal{F}} \frac{\|V\|_{q}}{\sqrt{m}}\right) E_{\sigma}\left[\frac{\left\|W_{\boldsymbol{\sigma}, \mathbf{X}}\right\|_{p}}{\sqrt{m n}}\right] .
\end{aligned}
$$

Bound last factor to get

theorem

Let \mathcal{F} be any set of linear transformations $V: H \rightarrow \mathbb{R}^{m}$. $p \in[4, \infty]$ and $p^{-1}+q^{-1}=1$.

$$
\hat{\mathcal{R}}_{n}^{m}(\mathcal{F})(\mathbf{X}) \leq \frac{2}{\sqrt{n}}\left(\sup _{V \in \mathcal{F}} \frac{\|V\|_{q}}{\sqrt{m}}\right) \sqrt{\|\hat{C}(\mathbf{X})\|_{p / 2}+\sqrt{\frac{2}{m}}}
$$

where $\hat{C}(\mathbf{X})$ is the empirical covariance operator

$$
\hat{C}(\mathbf{X}) z=\frac{1}{m n} \sum_{l=1}^{m} \sum_{i=1}^{n}\left\langle z, X_{i}^{l}\right\rangle X_{i}^{l} \text { for } z \in H
$$

multi-task subspace learning

$$
\begin{aligned}
\mathcal{F}_{B, d} & =\left\{V: \frac{1}{m} \sum_{l}\left\|v^{l}\right\|^{2} \leq B^{2} \text { and } \operatorname{rank}(V) \leq d\right\} \\
& \Longrightarrow \sup _{V \in \mathcal{F}_{B, d}} \frac{\|V\|_{q}}{\sqrt{m}} \leq B d^{\frac{p-2}{2 p}}
\end{aligned}
$$

For homogeneous data-distribution on k-sphere $\|C\|_{p / 2}=k^{\frac{2-p}{p}}$, so

$$
\begin{aligned}
E_{\mathbf{X}}\left[\hat{\mathcal{R}}_{n}^{m}\left(\mathcal{F}_{B, d}\right) \mathbf{X}\right] & \leq \frac{2 B}{\sqrt{n}} \sqrt{\left(\frac{d}{k}\right)^{\frac{p-2}{p}}+d^{\frac{p-2}{p}} \sqrt{\frac{3}{m}}} \\
& \rightarrow \frac{2 B}{\sqrt{n}} \sqrt{\frac{d}{k}} \text { if } p=\infty \text { and } m \rightarrow \infty
\end{aligned}
$$

graph regularization

(Evgeniou+Micchelli+Pontil)

Suppose $w_{l r}$ quantifies our belief in the similarity of tasks l and r, Assume $w_{l r}=w_{r l}, w_{l r} \geq 0$ and connectedness.

Suggests regularizer

$$
\begin{aligned}
J(V)^{2} & =\frac{1}{2 m} \sum_{l, r} w_{l r}\left\|v^{l}-v^{r}\right\|^{2}+\frac{\eta}{m} \sum_{l=1}^{m}\left\|v^{l}\right\|^{2} \\
& =\frac{1}{m} \operatorname{tr}\left(V^{*}(\Delta+\eta I) V\right),
\end{aligned}
$$

where Δ is the m-vertex graph-Laplacian with edge-weights w.

a bound for graph regularization

With $A:=\Delta+\eta I$ (then A is non-singular and ≥ 0)

$$
\begin{aligned}
\hat{\mathcal{R}}_{n}^{m}(\mathcal{F})(\mathbf{X}) & =E_{\sigma}\left[\sup _{V \in \mathcal{F}} \frac{2}{m n} \operatorname{tr}\left(V^{*} A^{1 / 2} A^{-1 / 2} W_{\boldsymbol{\sigma}, \mathbf{X}}\right)\right](\leftarrow \text { trick }) \\
& \leq \frac{2}{\sqrt{n}} \sup _{V \in \mathcal{F}}\left(\frac{\operatorname{tr}\left(V^{*} A V\right)}{m}\right)^{1 / 2}\left(\frac{E_{\sigma}\left[\operatorname{tr}\left(W_{\boldsymbol{\sigma}, \mathbf{X}}^{*} A^{-1} W_{\boldsymbol{\sigma}, \mathbf{X}}\right)\right]}{m n}\right)^{1 / 2} \\
& \leq \frac{2}{\sqrt{n}} \sup _{V \in \mathcal{F}} J(V) \sqrt{\frac{1}{m} \sum_{i=2}^{m} \frac{1}{\lambda_{i}+\eta}+\frac{1}{m \eta}},
\end{aligned}
$$

where λ_{i} are the eigenvalues of Δ in non-decreasing order.

