

Injecting Data into Simulation: Can Agent-Based Modelling Learn from Microsimulation?

Samer Hassan

Juan Pavón

Nigel Gilbert

Universidad Complutense de Madrid

University of Surrey

A Method for Data-Driven ABM

A Case Study: Mentat

Uniform Random Distribution

Common for initialisation

- But also in
 - Distribution of objects in space
 - Determining unmeasured exogenous factors
 - Controlling agent behaviour

There is always a chance of non-matching

What if the target behaviour is an outlier?

Basing initial conditions on empirical data

Moving ABM in the direction of the Target

- Hypothesis: "over a sufficiently long period of time the results of Eurovision would approximate to random"
- Random initial conditions & random voting schema should approach the real situation...
- ...but they don't

- Introducing empirical data approaches the real scenario:
 - Distance between countries
 - Measuring similarity of cultures

A Method for Data-Driven ABM

A Case Study: Mentat

- Approaching to Microsimulation
 - Surveys / Census \rightarrow initialisation
 - Equations / Probability rules → behaviour
- Difficulties of Microsimulation
 - Requires plenty of quantitative data
 - Unable to model interactions

A Method for Data-Driven ABM

Learning from Microsimulation:

- Minimizing random initialisation
 - Basing the simulation in representative survey samples
- Explicit rules need plenty of data
 - Using probability equations to determine changes in the values of agent parameters
- Injecting more data into ABM
 - From other sources (e.g. qualitative)
 - In other stages (e.g. design)

Classical Logic of Simulation

Proposal for Data-Driven ABM

A Method for Data-Driven ABM

Difficulties

- When the ABM is too abstract
 - Empirical data cannot be obtained
- Requires detailed data from individuals
 - Suitable surveys? Unobservable?
 - Need of individual history? (panel studies)
- Requires dynamic information
 - Difficult to obtain: networks, micro-interaction
- Complicating not always implies benefits
- Loss of generality? Discussed

A Method for Data-Driven ABM

A Case Study: Mentat

 Aim: simulate the process of change in moral values
in a period

- in a period
- in a society

Plenty of factors involvedNow focusing on demography

Mentat: architecture

Agent:

- Mental State attributes
- Life cycle patterns
- Demographic micro-evolution:
 - Couples
 - Reproduction
 - Inheritance

Mentat: architecture

- World:
 - 3000 agents
 - Grid 100x100
 - Demographic model
 - 8 indep. parameters

- Network:
 - Communication with Moore Neighbourhood
 - Friends network
 - Family network

A Case Study: Mentat

- Does the empirical initialisation substantially change the output in a pre-designed ABM?
- Random approach
 - No effort for additional data
 - Average behaviour
- Data-driven approach
 - Newly collected data is useful
 - Empirically based evolution

A Case Study: Mentat

Two ABM:

Same design and micro-behaviour

Different initialisation

- Mentat-RND: Random age
- Mentat-DAT: Empirically based age
- Same validation
 - Against newly collected data, not used in initialisation

Comparison of outputs

	EVS/Census*			Mentat-RND			Mentat-DAT		
	1980	1990	1999	1980	1990	1999	1980	1990	1999
% 65+ years	16^{*}	18^{*}	21^{*}	19	24	29	15	19	24
% Single	28	29	29	82	45	37	323	42	35
% Population Growth		<u> </u>	$+8\%^*$	8 8 <u>8</u>		+10.1%	328	3 <u>2</u> 3	+7.2%

* Source: Spanish Population Census for the years 1981, 1991 and 2001

A Method for Data-Driven ABM

A Case Study: Mentat

- Explore the problem background: availability of data?
- Compare different sources of data to give a stronger foundation to the model
- The most valuable data are those that provide repeated measurements
- Design ABM with an output directly comparable with empirical data
- Simulate the past and validate with the present

Thanks for your attention!

Samer Hassan samer@fdi.ucm.es

University of Surrey

Universidad Complutense de Madrid

