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OUTLINE

» General observation: Fluctuation Scaling (FS) is
ubiquitous in complex systems
Examples from population dynamics, internet traffic,
stock market, etc.
» Categorization: Temporal and ensemble FS
* Interesting effects: Window dependence, multiscaling
» Possible scenarios:
- Central Limit Theorems
- Strong driving
- Random Walk with impact
- Finite Size Scaling
e Summary




GENERAL OBSERVATION: FLUCTATION SCALING

1938 Fairfield Smith: For fixed size A of lands the average
yield f, and the variance O, was measured. Varying A,
the two quantities show scaling:

—a,

O, T, (1) with g = 0.62

* 1961 L.R. Taylor (1924-2007) in Nature: "Aggregation,
variance and the mean”. Counted # of animals in given
areas, and stated that (1) is a "universal law” (today called
Taylor's law in population dynamics).

*Triggered more than 1000 studies. Widely accepted as
one of the few universal laws in ecology.
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Vinyn=1,...,N; — fi,i=1,..., M — total activity

a group of 1nd1v1dua15 — a pc}pulati{:}n — a species

a single tree — a single forest — all forests of a continent
a single data packet — router — Internet

a single car — measurement point — highway system
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Fluctuation scaling for ensemble averages of the population of
four species. Every point represents the mean f, and variance
O, over an ensemble of areas of the same size A. The bottom
dashed line corresponds to .= 1/2, the top one to o = 1.
Points were shifted both vertically and horizontally for better
visibility. Data from Taylor (1961).
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f and its variance o2 was calculated separatelv. Then these points were binned logarithmically for
hetter visibility, ag = 1.



Temporal Fluctuation Scaling

Consider population time series in different habitats. The
average and the varience of the time series scale like
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Figure 4. Fluctuation scaling for temporal averages of the population of three species. A point
represents the temporal mean {f;}) and variance U’? of a population. The bottom dashed line
corresponds to ar = 1/2, the top one to ar = 1. Points were shifted both vertically for better
visibility. Data courtesy of Marm Kilpatrick [36, 37].




Multichannel observations in complex systems

« Usually processes take place on networks
— Internet
— traffic networks
— stock market

* Coupling to external world/drive present

* Multichanel observation: Activity measured on
the i-th node (or link) : 1 (t)




Highways Computer chip

f.(t) =traffic at a given point of.(t) =state of a given logic
of aroad i at dayt. component i at clock cycle t.
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462 signal carriers

Daily traffic on 127 Colorado

roads from 1998 to 2001. * 8,862 clock cycles.

M. de Menezes and A.-L. Barabasi,



Internet World Wide Web

of.(t) = number of bytes passing of.(t) = number of visits to website
through router i at time t. | at day t

gsarchiversox0721.htm
iz 'yossip .gif
Chicago-Trbune: Beaps frehives
I6ago TNDURREREIILE Sox AChIVESSSmewe cicago Tribune: Comdex Live: Day 4

-
zagy Tribune: Cubs® Archives,

~ Qxfwnnhul..gif '\\

Chicago Tribune: White Sox Archives

registindex.html

*
\
|

"‘“"'""'ke“‘)ggs'c‘h:\: h!l att.cdmmeadstory el :::::3;2’:?:
The Chicago Tribune emailz.h m_
. pixAth95.gif “':.'I'{:]"_ff:;g‘

- nailto:Fastled

\

\ i «hicago Tribune: Jordan Archive;

o CHO731

turrent.htm - -~
—

-
- nomes

Wrurw . fonbd.com

i homeshomes.htm
Chicago Tribune Homes Ccalaug htige

®twwr fcnbd.com
‘.'lltp:ﬂwww.inleresl..[:um."lrihulm s archivessox0802 . htm

e { Br e s

v ——— wrw efleppard com W s W com
NEE - aup 3 :
XH - |
) i :_'_._.,;. ™ .:...
A il ' Fy - ' :
\“u*;'*qn"“.""f"h,a""“'.-rwl"”‘q' g | : .
z | u - ;
W Akl : 5 i
WO A ) \: _"_.-‘n LU T R i ~... 40 B0 BI0 M0O0 NGO 400 D600 1M E . n r ' -
I | TR time | minulcs) fme e iy
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=2 days (5 min. resolution) Daily visitation for a 30 day period
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What can we learn from this?
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The scaling
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Two universality classes?

Simple random walk model:
Network with
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Two universality classes?

We have seen many «, #1orl/2 for the ensemble
averages. What about the time averages?

Stock market data: Take a window of size At=10min, and
consider the volume of a stock | traded during this time
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Dependence on At
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Multiscaling

If in the scaling form

(Ifi = (f)I) = CH(AL, q) (£:) "

o depends on g, we have multiscaling (stock market):
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Subj. Svstem T/E Hets,

0 andom walk 1 7, 41,33
"5 Network maodels T [34, 35
E Highway network T [T, 31]
= World Wide Weh T [T, 31]
Internet T [7, 31, 32]
it Heavy ion collisions E [26-28]
A Cosmic rays E [29, 30]
I Stock market T | [8, 55, 56, 59]
g Stock market E this review
Business firm growth rates E [60, 61]
i X Email trattic T this review
T: time average - Printing activity T this review
. — River flow T 62, 63
E: ensemble average g Pt |
. Forest reproductive rates T 145, 46]
..l..E- Satake-Iwasa forest model T [44]
o Crop yield T 6]
2, Animal populations T, E | [5. 10, 15, 16]
'n;: Diffusion Limited population E [17]
= Population growth T [65, 66
l'.g Exponential dispersion models | E [18, 21, 67]
Interacting population model T [36]
Cell mumbers | |20]
Protein expression T [54]
f Gene expression T (65, 69]
g Individual health E [T0]
= Tumor cells E [21]
Z Human genome E [22, 23]
= Blood flow E [67]
Oncology E [21]
Epidemiclogy T [52, 53]




Many questions:

* What is special about a = 1/2 and 1?

 Are there universality classes?

* How to relate At dependence to other types of scaling?
* How to relate time and ensemble averages?

* What are the possible scenarios?

* When is multiscaling expected?

* What is its origin?

« What is the "physical” meaning of the crossovers?

» Corrections to scaling?




o=1/2

Simple case: Central Limit Theorem

variance o« sqrt(mean)

Examples: Stat. phys. fluctuations, random walkers on a
network with broad degree distribution and many more.

Another route to o = 1/2:

If the signal is 1 or O (# emails) and At is short enough such
that no multiple events happen, then f.(t) = f.(t). E.g., for

independent events o = p(1—
Scaling possible only if <f> spans
magnitudes - p is small S>0° ~

D)

many orders of

0 =< f > hence a =1/2
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o =1

If there is synchronization in the system, mostly due to a
strong external drive, the internal fluctuations become
irrelevant and the major part of the fluctuations come from
the drive itself,
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General o

o =1/2 and o = 1 are not “universality classes in the stat.
phys. sense. They are trivial extremes.

Generally:

112< a1

How to obtain non-trivial o-s?

- Impact inhomogeneity
- Finite Size Scaling




Impact inhomogeneity
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Finite Size Scaling (FSS)

Linear size of the system: L
Number of "spins”: L9
Order parameter: M
Susceptibility: y ~ &2

FSS M oc L™V d+4ylv
at —— o=,y c MM =\
criticality y oc L™

Hyperscaling: a=1

What if not M = N, — Ny,,n but just N, is looked at?
N,, = L%is extensive but with fluctuations like in

— 1+7//V with 1/2<a =1, e.g., oy = 3/4

T g SOC?
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From the correlations (for 1d)
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Hurst exponent vs. FS O; C < fi >aT

If f comes from time series, ¢, may scale with the length of the
series as

1/2

oi(At) = {[fAU1) = (fA))]) T o AtHO)
EJT E.JT 2 b

The dependence of o on Af implies a dependence of H on i:

dH (i) da(At)

- —— i~ -
d ( l{;}g;g' { f i)) (

I(log At)

-

which is governed by the same v.
No universality! (E.g., dependence of H on capitalization.)




Limit theorems

FS is always related to sums of random variables.
We have seen that a = 1/2 comes from plain CLT

In the language of limit theorems FS means

\ _'?\'irr ri o
Z_ = ]_ 1 n :'-._ JL _.-':: | Y

Possible reasons to get nontrivial a.:
* iid, but Levy stable distributions
» dependence of the variables (see, e.g. FSS)




Summary

FS: O oC < f >a

general observation over many disciplines and systems
FS: ensemble/temporal

112< o<1

Trivial limiting cases (no universality classes)
Scenarios to non-trivial a-s

Limit theorems

Review by Z. Eisler, |. Bartos and J. Kertesz:
Adv. Phys. 57, 89-142 (2008), arXiv:0708.2053
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