Levy-stable processes in economics

Edoardo Gaffeo
University of Trento

$4^{\text {th }} \mathrm{PhD}$ European Complexity School
Jerusalem, September 10-14, 2008

Topics

- Levy-stable distributions and their properties
- A bit of history: the revenge of Mandelbrot
- Applications in economics
- Business cycle theory
- Diversification theory
- Demand dynamics in experience-good markets
- Theory: economic-based generative processes
- Matching
- Information transmission
- Choice-theoretic based GLV

General properties

- A four-parameter family of distribution: $S(\alpha, \beta, \delta, \gamma)$ where $\alpha \in(0,2]=$ index of stability/characteristic exponents

$$
\begin{aligned}
& \beta \in[-1,1]=\text { skewness parameter } \\
& \gamma>0=\text { scale parameter } \\
& \delta \in \mathrm{R}=\text { location parameter }
\end{aligned}
$$

- A stable distributed random variable X has characteristic function

$$
E \exp (i u X)= \begin{cases}\exp \left(-\gamma^{\alpha}|u|^{\alpha}\left[1+i \beta\left(\tan \frac{\pi u}{2}\right)(\operatorname{sign} u)\left(|\gamma u|^{1-\alpha}-1\right)\right]+i \delta u\right) & \alpha \neq 1 \\ \exp \left(-\gamma|u|\left[1+i \beta \frac{2}{\pi}(\operatorname{sign} u) \log (\gamma|u|)\right]+i \delta u\right) & \alpha=1\end{cases}
$$

PDFs in closed forms only in three cases

- $\alpha=2 \longmapsto$ Gaussian
- $\alpha=1 ; \beta=0 \quad$ Cauchy
- $\alpha=0.5 ;|\beta|=1$ Levy

Implications

- Tails are power-law distributed: $P(|X|>x) \sim x^{-\alpha}$
- Moments are infinite for $p>\alpha$

Levy-stable processes have a long history in economics

- Mandelbrot (1960`)
- The ARCH-GARCH counter-revolution (1970` - 1980`)
- The econophysics movement (1990`)

Applications in economics

1. Business cycles

- Gabaix (2005), The granular origin of aggregate fluctuations In real economies the FSD is a power law
\longrightarrow shocks to few BIG firms cause a slow-down of the LLN
... an economy composed of N firms will display aggregate fluctuations with size proportional to $1 / \ln (N)$, rather than $1 / N^{1 / 2}$.

Shocks are assumed to possess finite variance.

Applications in economics

1. Business cycles

What if shocks have infinite variance?

- Gaffeo (2008), Levy-stable productivity shocks

Main idea: take TFP growth rates for more than 400 sectors, and try to make some distribution fitting exercises.

Data are available for the USA.

Applications in economics

1. Business cycles

Industry 2083

Industry 2436

Industry 3088

Industry 3631

Are they just outliers?

TabLE 2. TFP growth rate distribution parameter estimates, full sample; for maximum likelihood estimates, the 95% confidence bounds are reported

Method	α	β	γ	δ
Quantile	1.5609	-0.0095	0.0316	0.0069
ECF	1.7035	-0.0509	0.0330	0.0069
ML	1.6324 ± 0.0232	-0.0282 ± 0.0563	0.0323 ± 0.0005	0.0068 ± 0.0008

Method	α	β	γ	δ	Method	α	β	γ	δ
Industry 20					Industry 25				
Quantile	1.3689	-0.1168	0.0329	0.0069	Quantile	1.6696	-0.2020	0.0272	0.0032
ECF	1.5219	-0.0284	0.0347	0.0085	ECF	$\begin{gathered} 1.8371 \\ 1.8547 \pm 0.1101 \end{gathered}$	$\begin{gathered} -0.5107 \\ -0.0647 \pm 0.6593 \end{gathered}$	0.0279	0.0022
ML	1.4208 ± 0.0713	-0.0869 ± 0.1226	0.0333 ± 0.0017	0.0057 ± 0.0026	Industry 26				0022 +0.0042
Industry 21					Quantile	1.6535	-0.0619	0.0278	0.0044
Quantile	1.4555	-0.0707	0.0283	-0.0021	ECF	1.6925	-0.3499	0.0275	0.0042
ECF	1.6655	-0.3739	0.0307	-0.0026	ML	1.6217 ± 0.1203	-0.1594 ± 0.2785	0.0267 ± 0.0021	0.0039 ± 0.0036
ML	1.5517 ± 0.2520	-0.0353 ± 0.5235	0.0238 ± 0.0050	-0.0034 ± 0.0083	Quantile	1.5939	-0.0036	0.0241	0.0014
Industry 22					ECF	1.8406	0.2039	0.0262	0.0025
Quantile	1.5656	-0.1540	0.0293	0.0113	ML	1.7702 ± 0.1214	0.0914 ± 0.4422	0.0259 ± 0.0020	0.0005 ± 0.0038
ECF	1.8095	-0.4415	0.0313	0.0108	Industry 28				
ML	1.7160 ± 0.0987	-0.2338 ± 0.2888	0.0307 ± 0.0019	0.0113 ± 0.0036	Quantile	1.5922	-0.1312	0.0372	0.0133
Industry 23					ECF	1.7621 1.6615	-0.1305	0.0390	0.0122
Quantile	1.5448	-0.0151	0.0323	0.0049	ML Industry 29	1.6615 ± 0.0909	-0.1297 ± 0.2323	0.0380 ± 0.0022	0.0144 ± 0.0039
ECF	1.7676	-0.2273	0.0340	0.0038	Quantile	1.6149	-0.3042	0.0326	0.0094
ML	1.6548 ± 0.0885	-0.0226 ± 0.2266	0.0329 ± 0.0018	0.0058 ± 0.0033	ECF	1.7804	-1.0000	0.0345	0.0089
Industry 24					ML	1.6627 ± 0.2161	-0.3928 ± 0.5316	0.0334 ± 0.0046	0.0078 ± 0.0084
Quantile	1.5675	0.0761	0.0315	0.0027	Industry 30				
ECF	1.7693	0.1878	0.0330	00022	Quantile	1.4814	-0.5087	0.0206	0.0205
ML	1.6650 ± 0.1190	0.0412 ± 0.3109	0.0322 ± 0.0024	0.0038 ± 0.0044	ML	1.7248 ± 0.1158	-0.6518 ± 0.2974	0.0228 ± 0.0017	0.0167 ± 0.0033

Method	α	β	γ	δ	Method	α	β	γ	δ
Industry 31					Industry 37				
Quantile	1.4534	-0.0703	0.0348	0.0002	Quantile	1.5310	-0.0319	0.0309	0.0065
ECF	1.7092	-0.4116	0.0383	-0.0017	ECF	1.6906	0.0562	0.0330	0.0066
ML	1.5601 ± 0.1510	-0.1710 ± 0.1510	0.0366 ± 0.0036	0.0016 ± 0.0062	ECF	1.6574			
Industry 32					ML	1.6574 ± 0.1157	-0.0893 ± 0.2950	0.0325 ± 0.0024	0.0073 ± 0.0043
Quantile	1.5830	-0.0627	0.0326	0.0084	Industry 38				
ECF	1.7531	-0.0217	0.0342	0.0079	Quantile	1.8398	0.4933	0.0341	0.0018
ML	1.7003 ± 0.0943	-0.1819 ± 0.2612	0.039 ± 0.0020	0.0096 ± 0.0037	ECF	1.8561	0.1073	0.0348	-0.0011
Industry 33							$0.0916+0.4174$		
Quantile	1.6534	-0.1389	0.0369	0.0060	ML	1.7858 ± 0.1087	0.0916 ± 0.4174	0.0343 ± 0.0024	0.0048 ± 0.0046
ECF	1.8060	-0.1600	0.0385	0.0058	Industry 39				
ML	1.7279 ± 0.0922	-0.1673 ± 0.2850	0.0378 ± 0.0022	0.0066 ± 0.0041	Quantile	1.4864	-0.0555	0.0297	0.0106
Industry 34					ECF	1.6477	-0.1247	0.0309	0.0114
Quantile ECF	1.6532 1.7119	0.1550 0.1742	0.0304 0.0308	0.0025 0.0018	ML	1.5690 ± 0.1184	-0.0830 ± 0.2508	0.0301 ± 0.0023	0.0099 ± 0.0040
ML	1.6793 ± 0.0792	0.0397 ± 0.2136	0.0305 ± 0.0015	0.0027 ± 0.0028					
Industry 35									
Quantile	1.4936	0.2254	0.0315	0.0030					
ECF	1.6454	0.2217	0.0332	0.0035					
ML	1.6108 ± 0.0692	0.3144 ± 0.1519	0.0330 ± 0.0015	0.0021 ± 0.0026					
Industry 36									
Quantile	1.6905	-0.1613	0.0337	0.0162					
ECF	1.7283	-0.1256	0.0337	0.0174					
ML	1.6667 ± 0.0807	-0.0217 ± 0.2122	0.0331 ± 0.0017	0.0144 ± 0.0030					

Table 4. Characteristic exponents of the errors distri-

What about common shocks?

 bution from cross-section linear regressions with stable disturbances| | $\alpha($ s.e. $)$ | | $\alpha($ s.e. $)$ |
| :--- | :---: | :---: | :---: |
| 1959 | $1.4967(0.0715)$ | 1978 | $1.5308(0.0747)$ |
| 1960 | $1.4935(0.0717)$ | 1979 | $1.5136(0.0748)$ |
| 1961 | $1.5686(0.0739)$ | 1980 | $1.4947(0.0738)$ |
| 1962 | $1.6281(0.0800)$ | 1981 | $1.5538(0.0700)$ |
| 1963 | $1.4500(0.0704)$ | 1982 | $1.5679(0.0693)$ |
| 1964 | $1.5908(0.0735)$ | 1983 | $1.4483(0.0719)$ |
| 1965 | $1.7071(0.0827)$ | 1984 | $1.5629(0.0770)$ |
| 1966 | $1.6389(0.0757)$ | 1985 | $1.5278(0.0711)$ |
| 1967 | $1.8781(0.0666)$ | 1986 | $1.5027(0.0709)$ |
| 1968 | $1.9031(0.0594)$ | 1987 | $1.5022(0.0727)$ |
| 1969 | $1.6302(0.0742)$ | 1988 | $1.6202(0.0750)$ |
| 1970 | $1.7838(0.0701)$ | 1989 | $1.5373(0.0700)$ |
| 1971 | $1.7503(0.0713)$ | 1990 | $1.6273(0.0729)$ |
| 1972 | $1.4675(0.0768)$ | 1991 | $1.5569(0.0716)$ |
| 1973 | $1.5068(0.0795)$ | 1992 | $1.6260(0.0724)$ |
| 1974 | $1.5160(0.0746)$ | 1993 | $1.5823(0.0742)$ |
| 1975 | $1.5342(0.0772)$ | 1994 | $1.5327(0.0691)$ |
| 1976 | $1.4383(0.0717)$ | 1995 | $1.5707(0.0795)$ |
| 1977 | $1.5102(0.0748)$ | 1996 | $1.5799(0.0743)$ |

Implications for business cycles

Let us start from Hulten (1978): the rate of increase of GDP caused by iid shocks to TFP τ to N sectors is

$$
g_{\mathrm{GDP}}=\sum_{i=1}^{N} \frac{S_{i}}{Y} \tau_{i}
$$

If shocks have identical finite variar ${\underset{\sigma}{\tau}}_{\underline{2} \cdot}^{2}$, and each sector is $1 / N$ of the total, then

$$
\sigma_{\mathrm{GDP}}=\frac{\sigma_{\tau}}{\sqrt{N}}
$$

As the number of sectors gets large, the aggregate standard deviation becomes negligible.

Ex. If $\sigma=6 \%$ for 450 sectors, then aggregate volatility is 0.15%.

Implications for business cycles

If shocks are iid $\sim S(\alpha, 0, \delta, 0)$, by the property of invariance under convolution we have

$$
\tilde{\sigma}_{\mathrm{GDP}}=\frac{\tilde{T}^{\frac{1}{2}}}{N^{\left(\frac{\sigma-1}{\alpha}\right)}}
$$

where T is a stable-distributed random variable.

Hence, aggregate fluctuations decays with N at th $\frac{\alpha-1}{\alpha}$ te that is much more slo $_{N^{-\frac{1}{2}}}$ than as implied by Gaussian shocks.

Applications in economics

2. Diversification theory

- Ibragimov, Jaffe and Walden (2008), Nondiversification traps in catastrophe insurance markets

How much risky is our economic well-

 being?

How to manage the largest economic risks?

Example: Human capital

- Construct labor income indices pricing uncertainty on future labor income;
- Design a market for labor income risk-sharing;

Problems in creating a market for labor income risk-sharing

1) Moral hazard;
2) Psychological barriers in buying insurance;
3) Microstructure of the market:

- Role of intermediares
- Contract settlement
- Liquidity

Ref.: Shiller (1993); Shiller and Schneider (1998).

A simple implementation

1) FIs offer insurance contracts incorporated into deposit account contracts;
2) Short position on an index related to the income from his occupation, long position on a portfolio of indices for other occupations;
3) Max overdraft facility used as a margin for labor insurance contract settlements.

Could it work?

1) Sizeable diversifiable labor income risk;
2) Careful assessment of risk distributions

- Index and option pricing
- Optimal portfolio selection
- Intermediaries' risk management

A picture of the labor market in the U.S.

Average hourly wages for occupations at a 4-digit level, 2006

Descriptive statistics

Average hourly wages for occupations in 4-digit sectors, 2006

	Mean	Max	Min.	Std. Dev.	Skewness	Kurtosis	Obs.
$[0,20)$	14.04	19.99	6.08	3.1217	0.0005	2.1073	24089
$[20,40)$	27.36	39.98	20.00	5.2036	0.5501	2.3223	1643
$[40,60)$	47.01	59.91	40.00	5.1928	0.5889	2.3216	2576
$[60,80)$	68.24	79.97	60.01	5.6702	0.3901	2.0573	440
$[80,100)$	84.34	95.46	80.00	3.6344	0.9430	3.1085	72
All	21.67	95.46	6.08	11.3236	1.6994	7.0849	43607

Is there enough variability?

cumulative growth rates of real hourly wages over a 5-year horizon

- 293 industries

Occupational majors

1) Management
2) Business and financial operations
3) Computation and mathematical science
4) Architecture and engineering
5) Life, physical and social science
6) Community and social services
7) Education, training and library
8) Art, design, entertainment, sports and media
9) Healthcare practitioner and technical occupations
10) Healthcare support
11) Protective service
12) Food preparation and serving
13) Building and grounds cleaning and maintenance
14) Personal care and service
15) Sales and related occupations
16) Office and administrative support
17) Farming, fishing and forestry
18) Construction and extraction
19) Installation, maintenance and repair
20) Production
21) Transportation

winners and loosers

cumulative growth rates of real hourly wages over a 5-year horizon

- 21 occupational major averages

Major: Management

1) Advertisement and promotion mgs
2) Sales mgs
3) Administrative services mgs
4) Marketing mgs
5) Computer and information systems mgs 12) General and operations
6) Financial mgs
7) Industrial production mgs
8) Purchasing mgs
9) Transport, storage and distribution mgs
10) Engineering mgs
11) Chief executives mgs mgs

Wage dispersion

12 different management occupations.

- $2002-2006$

winners and loosers

cumulative growth rates of real hourly wages over a 5-year horizon

- 12 managerial occupations

Could it work?

1) For sure, huge scope for risk-sharing;
2) Be careful in assessing the distributional features of occupational hedgeable risk

Estimation of occupation-specific growth uncertainty

$$
g_{i, t, t+s}-\bar{g}_{t, t+s}=\mu_{s}^{\prime}\left(z_{i, t}-\bar{z}_{t}\right)+u_{i, t, t+s}
$$

Ref.: Athanasoulis and van Wincoop (2001).

Diversifiable labor income risk (OLS)

Major occupations	c	μ	σ
Management	-0.0002	-0.2039	0.087
	(0.0051)	(0.0243)	
Business and financial operations	-0.0004	-0.2688	0.072
Computer and mathematical science	(0.0043)	(0.0275)	
	-0.0031	-0.2158	0.104
Architecture and engineering	-0.0034	(0.0415)	-0.4248
	(0.0077)	(0.0519)	0.113
Life, physical and social science	-0.0065	-0.5013	
Community and social services	(0.0102)	(0.0498)	0.156
	-0.0029	-0.3755	0.144
Education, training and tibrary	(0.0184)	(0.0791)	
	-0.0078	-0.2993	0.184
Art, design, entertainment, sport, media	(0.0193)	-0.0032	-0.1824
	(0.0085)	(0.0339)	0.131
Healthcare practitioner and technical	-0.0068	-0.2958	0.149
Healthcare support	(0.0113)	(0.0555)	
Protective service	-0.0031	-0.1715	0.105

Diversifiable labor income risk (OLS)

Major occupations	c	μ	σ
Food preparation and serving	$\begin{aligned} & \hline-0.0038 \\ & (0.0102) \end{aligned}$	$\begin{gathered} -0.3743 \\ (0.0613) \end{gathered}$	0.117
Building and grounds cleaning	$\begin{aligned} & -0.0009 \\ & (0.0047) \end{aligned}$	$\begin{gathered} -0.2921 \\ (0.0319) \end{gathered}$	0.078
Personal care and service	$\begin{aligned} & -0.0025 \\ & (0.0145) \end{aligned}$	$\begin{gathered} -0.5808 \\ (0.0576) \end{gathered}$	0.157
Sales and related	$\begin{aligned} & -0.0048 \\ & (0.0091) \end{aligned}$	$\begin{gathered} -0.0785 \\ (0.0232) \end{gathered}$	0.152
Office and administrative support	$\begin{gathered} 0.0003 \\ (0.0022) \end{gathered}$	$\begin{gathered} -0.0987 \\ (0.0149) \end{gathered}$	0.077
Farming, fishing and forestry	$\begin{aligned} & -0.0037 \\ & (0.0144) \end{aligned}$	$\begin{gathered} -0.2499 \\ (0.0757) \end{gathered}$	0.127
Construction and extraction	$\begin{aligned} & -0.0050 \\ & (0.0087) \end{aligned}$	$\begin{gathered} -0.3842 \\ (0.0509) \end{gathered}$	0.129
Installation, maintenance and repair	$\begin{gathered} -0.0003 \\ (0.0036) \end{gathered}$	$\begin{gathered} -0.1174 \\ (0.0203) \end{gathered}$	0.061
Production	$\begin{gathered} -0.0007 \\ (0.0058) \end{gathered}$	$\begin{gathered} -0.1626 \\ (0.0242) \end{gathered}$	0.096
Transport	$\begin{array}{r} 0.0086 \\ (0.0058) \\ \hline \end{array}$	$\begin{gathered} -0.1043 \\ (0.0236) \\ \hline \end{gathered}$	0.098

Diversifiable labor income risk (Levy errors)

Major occupations	c	μ	α
Management	0.0031	-0.1829	1.5427
	(0.0041)	(0.0205)	(0.1064)
Business and financial operations	0.0004	-0.2404	1.6728
	(0.0036)	(0.0250)	(0.0987)
Computer and mathematical science	0.0095	-0.1091	1.4995
	(0.0046)	(0.0343)	(0.0937)
Architecture and engineering	-0.0017	-0.2582	1.5702
	(0.0058)	(0.0528)	(0.1246)
Life, physical and social science	0.0065	-0.3137	1.5366
	(0.0074)	(0.0452)	(0.1103)
Community and social services	0.0144	-0.1963	1.2843
	(0.0123)	(0.0883)	(0.2176)
Education, training and library	-0.0063	-0.1483	1.4801
	(0.0137)	(0.0471)	(0.1511)
Art, design, entertainment, sport, media	0.0004	-0.1277	1.7380
	(0.0076)	(0.0340)	(0.0968)
Healthcare practitioner and technical	-0.0031	-0.2317	1.4719
	(0.0080)	(0.0505)	(0.1317)
Healthcare support	-0.0052	-0.1769	1.9218
	(0.0130)	(0.0719)	(0.1583)
Protective service	-0.0204	-0.2685	1.4517

Diversifiable labor income risk (Levy errors)

Major occupations	c	μ	σ
Food preparation and serving	0.0150	-0.0767	1.1077
	(0.0065)	(0.0660)	(0.1271)
Building and grounds cleaning	-0.0084	-0.3067	1.6663
	(0.0038)	(0.0254)	(0.1031)
Personal care and service	0.0518	-0.0792	1.1344
	(0.0104)	(0.0622)	(0.1328)
Sales and related	-0.0064	-0.0233	1.4996
	(0.0058)	(0.0145)	(0.0923)
Office and administrative support	0.0017	-0.0830	1.7559
	(0.0020)	(0.0144)	(0.0908)
Farming, fishing and forestry	-0.0037	-0.2499	2.0000
	(0.0144)	(0.0747)	(0.0000)
Construction and extraction	-0.0055	-0.1908	1.4109
Installation, maintenance and repair	(0.0064)	(0.0413)	(0.1154)
	0.0038	-0.0974	1.4470
Production	(0.0024)	(0.0145)	(0.0974)
	0.0003	-0.0985	1.3875
Transport	(0.0036)	(0.0172)	(0.0938)
	0.0034	-0.0946	1.3548

Management occupations (G-Levy errors)

Management	c	μ	α	β	γ
Advertisement and promotion	0.0083	-0.3034	1.6868	-0.2032	0.0975
Sales	0.0107	-0.3571	1.6497	-0.4275	0.0629
Administration services	0.0034	-0.3812	1.8260	-0.3059	0.0764
Marketing	-0.0077	-0.3627	1.6031	0.0976	0.0676
Computer and information systems	0.0080	-0.4285	1.8236	-0.7142	0.0609
Finance	0.0008	-0.3574	1.8516	-0.1161	0.0575
Industrial production	0.0031	-0.3917	1.4196	-0.1042	0.0388
Purchasing	-0.0252	-0.3383	1.6346	0.7926	0.0626
Transport, storage and distribution	-0.0223	-0.4532	1.6678	0.5164	0.0688
Engineering	0.0031	-0.3380	1.8644	-0.2879	0.0499
Chief executives	-0.0028	-0.3729	1.9223	0.7847	0.0545
General and operations	-0.0016	-0.2419	1.8590	0.4740	0.0434

Applications in economics

3. Demand dynamics in creative good - Darkets (2005), Hollywood economics

Fig. 1. Empirical and fitted density functions of absolute profit.

Applications in economics

3. Demand dynamics in creative good markets
Creative markets display:

- Nobody knows principle
- The sample average profit is not stationary, as extreme events dominate the average
- Conditional expectations do not converge Success breeds success

Applications in economics

3. Demand dynamics in creative good markets This is good also for books

Gaffeo, Scorcu, Vici (2008), Demand distribution dynamics in creative industries: the market for books in Italy

Table 1
Estimates of the scaling exponent α for all three markets

Sample	Italian novels			Foreign novels			Non-fiction		
	a	b	c	a	b	c	a	b	c
94.1	1.39	1.12	1.31	1.38	1.34	1.36	1.32	1.25	1.27
94.2	1.33	1.14	1.18	1.34	1.23	1.27	1.33	1.32	1.33
94.3	1.21	1.05	1.09	1.51	1.46	1.46	1.37	1.29	1.32
94.5	1.04	1.15	1.12	1.33	1.42	1.41	1.13	1.26	1.23
94.6	0.95	0.99	0.98	1.11	1.09	1.09	1.01	1.07	1.09
95.1	1.07	1.06	1.06	1.2	1.2	1.21	1.35	1.31	1.34
95.2	1.17	1.18	1.16	1.19	1.16	1.18	1.29	1.26	1.27
95.3	1.18	1.05	1.12	1.28	1.25	1.26	1.39	1.1	1.16
95.5	1.06	1.03	1.06	1.07	1.07	1.06	1.16	1.14	1.16
95.6	1.01	0.93	0.95	0.91	1.02	1.04	1.11	1.06	1.08
96.1	1.13	1.13	1.12	1.12	1.03	1.06	1.4	1.26	1.31
96.2	1.2	1.19	1.18	1.15	1.03	1.05	1.44	1.28	1.33
96.3	1.26	1.14	1.18	1.19	1.14	1.17	1.45	1.53	1.5
96.5	1.15	1.12	1.12	1.2	1.09	1.11	1.3	1.25	1.26
96.6	0.98	0.89	0.91	1.1	1	1.07	1.09	0.97	1.01

a: White's robust OLS estimates; b: robust regression estimates (Hamilton); c: median regression estimates. All parameters statistically significant at the 5% level. The goodness of fit R^{2} is higher than 0.94 in each case.

Theory: economic-based generative processes

1. Matching

Gabaix and Landier (2008), Why has CEO pay increased so much?

Consider the market for managers, each one endowed with a given amount of talent.

In the upper tail of any well-behaved distribution for talent $T(x), T^{\prime}(x)$ [marginal talent] is approximately a power function x^{α}.

It is possible to show that competitive matching generates a PL relation between CEO pay and firm size, and a PL of the pay distribution.

Theory: economic-based generative processes

2. Information transmission

Gaffeo, Scorcu, Vici (2008)

Generalized to M possible choices the Information Contagion model by Arthur and Lane (1993).

Each consumer is endowed with a constant absolute risk aversion utility function defined on the internal representations associated to the quality of the M issued books:

$$
u\left(\mu_{m}\right)= \begin{cases}-\exp \left(-2 \lambda \mu_{m}\right) & \text { if } \lambda>0 \tag{6}\\ \mu_{m} & \text { if } \lambda=0\end{cases}
$$

so that the objective function of the ith agent is to maximize a linear function of the mean and the variance of the posterior probability associated to the quality of the book m^{1} :

$$
\begin{equation*}
u_{m}=\frac{1}{n_{m}+\alpha_{m}}\left(n_{m} \mu_{m}^{*}+\alpha_{m} n_{m}-\lambda \sigma_{\mathrm{ob}}^{2}\right) \tag{7}
\end{equation*}
$$

where the constant λ measures the degree of risk aversion: the larger λ, the more risk averse the agent is. Upon computing u_{m} for each book in $(1, M)$, consumers choose the book with the highest expected utility.

Theory: economic-based generative processes

2. Information transmission

Gaffeo, Scorcu, Vici (2008)

We end up with an infinite Polya urn function.
as we let the probability of a new ball being placed in an existing urn (in our case, a new customer purchases an incumbent book) be proportional to s_{m}^{γ}, with the parameter $\gamma \in \mathbf{R}$, Theorems 3.1, 4.1 and 4.2 in Chung et al. (2003) state that
(i) if $\gamma>1$, one bin dominates;
(ii) if $\gamma=1$, the limit probability distribution function associated to the random vector (s_{1}, \ldots, s_{M}) satisfies

$$
\begin{equation*}
P\left[S_{m}=S_{m}\right] \propto C S_{m}^{-(1+\alpha)} \tag{10}
\end{equation*}
$$

that is a power law distribution with $\alpha=\frac{1}{1-p}$, and c is a constant;
(iii) if $-\infty<\gamma<1$, the distribution of bin sizes decreases exponentially under rather mild conditions.

Theory: economic-based generative processes

3. GLV

Delli Gatti, Gaffeo, Gallegati (2008), A look at the relationship between industrial dynamics and aggregate fluctuations

Three basic ideas

1. The firms` financial position matters
2. Agents are heterogeneous as regards how they perceive risk associated to economic decisions
3. Firms interact through the labour and equity markets

Main assumptions:

I firms operate in an homogeneous good market to maximize expected profits.

$$
\max _{y} E\left(\pi_{i t}-C_{i t}\right)=y_{i t}-R\left(\frac{w_{t} y_{i t}}{\phi}-a_{i t}\right)-\frac{c}{2\left(1-z_{i t}\right)}\left[\left(\frac{R w_{t}}{\phi}-z_{i t}\right) y_{i t}^{2}-R a_{i t} y_{i t}\right]
$$

The expected relative price is a random variable with a common mean equal to 1 , and variance $v\left(u_{i}\right)=\frac{\left(1-z_{i}\right)^{2}}{3}$, where z_{i} is a random variable.
As the bankruptcy cost c grows large, the reaction function of firm i becomes

$$
y_{i t} \cong \frac{R}{2\left(\frac{R w}{\phi}-z_{i t}\right)} a_{i t}=h_{i t} a_{i t}
$$

Finally, the wage rate is determined on an aggregate labor market according to the linear rule $w_{t}=b n_{t}$.
The evolution of the equity base at the individual level is given by:

$$
a_{i t+1}=u_{i t} y_{i t}-R\left(w_{t} n_{i t}-a_{i t}\right)+\gamma_{i} \bar{a}_{t}
$$

where \bar{a}_{t} is the average capitalization of firms at time t (hot market effect).

Solving the model

Assuming rational expectations for any i and t, as we take the cross-sectional average we obtain:

$$
\bar{a}_{t+1}=\left(\bar{h}_{t}+R\right) \bar{a}_{t}-R\left(\frac{I b \bar{h}_{t}^{2} \bar{a}_{t}^{2}}{\phi^{2}}\right)+\overline{\gamma a}{ }_{t}
$$

A suitable change of variable allows us to express the per-capita dynamics as:

$$
x_{t+1}=\Gamma x_{t}\left(1-x_{t}\right)
$$

where $x_{t}=R \frac{I b \bar{h}_{t}^{2}}{\phi^{2}} \bar{a}_{t} \quad$, and $\Gamma_{t}=\bar{h}_{t}+R+\bar{\gamma}$

LOGISTIC MAP

deterministic cycles if $3<\Gamma_{t}<3.57$ chaotic behavior if $3.57<\Gamma_{t}<4$.

The rational

Aggregate behavior based on the Lotka-Volterra dynamics

During an upswing, the increase of output induces higher profits and more equity funds. Higher production means also rising employment and higher wages, however. The increased wage bill calls for more bank loans which, when repaid, will depress profits and the production and the equity level as well. The labour requirement thus decreases, along with the real wage, while profits raise. This restores profitability and the cycle can start again.

The firms' size distribution

The model can be expressed, at an individual level, as a
Generalized Lotka-Volterra system (Solomon and Levy, 1996)

The dynamics is based on
i) a stochastic autocatalytic term representing production and how it impacts on equity;
ii) a drift term representing the influence played - via a hot market effect - by aggregate capitalization on the financial position of each firm
iii) a time dependent saturation term capturing the competitive pressure exerted by the labour market

The firms' size distribution

$$
\text { Let } \quad \varphi_{i}(t)=\frac{a_{i}(t)}{\bar{a}(t)} \text { be the relative equity of firm } \mathrm{i} .
$$

It can be shown that under rather general conditions

$$
\begin{aligned}
& P(\varphi) \sim \varphi^{-1-\alpha} \exp \left[\frac{-2 \gamma}{\sigma^{2} \varphi}\right] \\
& \text { with } \alpha=1+\frac{2 \gamma}{\sigma^{2}}
\end{aligned}
$$

The distribution $P(\varphi)$ is unimodal, as it peaks at $\mathscr{C}_{0}=\frac{1}{1+\frac{\sigma^{2}}{\gamma}}$
Above φ_{0} it behaves like a power law with scaling exponent α below φ_{0} it vanishes very fast.

Implications

1) α depends on:
i) how much rationed firms are in issuing new risk capital \Rightarrow how much capital markets are affected by adverse selection and moral hazard phenomena;
ii) how much heterogeneous individuals are as regards the perceived riskyness associated to their final demand.
2) Our model suggests that the degree of industrial concentration should be country-specific.
3) γ, that is a proxy for agency costs in capital markets, tunes at the same time the qualitative dynamic features of aggregate fluctuations and the longitudinal characteristics of microeconomic units.

Thank you all!

Edoardo Gaffeo

Department of Economics and CEEL University of Trento, Italy edoardo.gaffeo@unitn.it

