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“Why is network anatomy so important to characterize? 
Because structure always affects function.”
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Food Web of Little Rock Lake, Wisconsin
997 Feeding Links among 92 Taxa: 10 Basal, 72 Invertebrates, 10 Fishes

Fishes

Insects

Zoo-
plankton

Algae

S (# species) = 92
L (# trophic links) = 997
L/S (links per species) = 10.8
C (connectance, L/S2)  = 0.12



G. Evelyn Hutchinson, 1959



1950’s Paradigm:
Complex communities MORE 

stable than simple communities

1970’s Challenge:
Complex communities LESS 

stable than simple communities

Current & Future Research:
Food webs used to understand nature’s 

“devious strategies” that promote stability
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Link distributions

Apparent complexity 

Raw data for 16 webs



Link distributions

Apparent complexity Underlying simplicity? 

Raw data for 16 webs Normalized data for 16 webs
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Modeling food-web structure

The niche model: a simple, stochastic model of food-web structure

Two Parameters: S (species number) and C (connectance)
Randomly assign each species a niche value ni from 0 to 1
Use simple rules to distribute links among species

Feeding rules:
1) each species assigned a feeding range ri
2) feeding range is assigned a center ci < ni
3) species eat all taxa in their feeding range
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Summary of model constraints

   hierarchical feeding 
Model beta distribution intervality hierarchy exceptions 
Random no no no — 
Random beta yes no no — 
Cascade no no yes no 
Generalized cascade yes no yes nj = ni 
Niche yes       yes yes nj ≥ ni 
Relaxed niche yes   no* yes nj ≥ ni 
Nested hierarchy yes no yes  nj ≥ ni* 

 



Assessing model fit

ri0 1

i

ni

ci
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1. Degree distributions
2. Statistical approach
3. Likelihood approach



Assessing model fit: degree distributions

Niche Model Simulation Results
(generality: links to prey)



Assessing model fit: degree distributions

Niche Model Analytical Results



Assessing model fit: statistical approach

beyond degree distribution…

• Test: model against the structure of empirical food webs

• Assess: single-number structural properties

• Generate: sets of 1000 model webs with same S & C as empirical webs 

• Evaluate: how well does the model perform?

normalized model error = (empirical value – model mean) / (model median 
value – value at upper or lower 95% boundary of model distribution) 

MEs ≤ |1| show ‘good’ fit of model mean to empirical value



Single-number properties

Types of Organisms:

% Top spp. =   1.1
% Intermediate spp. = 85.9
% Basal spp. = 13.0
% Cannibal spp. = 14.1
% Herbivore spp. = 37.0
% Omnivore sp. = 39.1
% Species in loops = 26.1

Linkage Metrics:

Mean food chain length = 7.28
SD food chain length = 1.31
Log number of chains = 5.75
Mean trophic level = 2.40
Mean max. trophic simil. = 0.74
SD vulnerability (#pred.) = 0.60
SD generality (#prey) = 1.42
SD links (#total links) = 0.71
Mean shortest path = 1.91
Clustering coefficient = 0.18



Test of 10 webs, 5 models, 15 properties

Mean ME ≤ |1| for all models: 
effect of shared hierarchy + beta 
distribution constraints

Niche generally performs best

All models drastically under-
estimate herbivory.



Assessing model fit: likelihood-based approach

Assess topology of networks as a whole

Minimum potential niche model performs best:
no irreproducible connections
marginally better likelihood than the niche model
much better likelihood than nested hierarchy or cascade.
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Desert
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Underlying Simplicity
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Two Parameters (C, S) 

Simple Link Distribution Rules

Successful Prediction of Structure



Food-web structure is systematically scale-dependent on S and L

Many aspects of structure are well-predicted by the niche model 

Food webs from various habitats share many aspects of structure
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Can these analyses be extended through 
deep time to ancient ecosystems?



Miocene (14 Ma) Seagrass Community

Prior “deep-time” trophic structure research

Methodological Issue: Low Resolution!



Geologic Time Scale

Burgess Shale (505 Ma)

Chengjiang Shale (520 Ma)

Lagerstätten: Fossil assemblages with exceptional soft-tissue preservation



Burgess Shale Biota Anomalocaris
Wiwaxia

Waptia Marella

Hallucigenia Opabinia

Pikaia Ottoia

Ollenoides



Artist’s Intuition Scientist’s Intuition

Anomalocaris canadensis hunting trilobites
Image by Ken Dowd (via NSF)

We may perhaps therefore see in the 
process of evolution an increase in 
diversity at an increasing rate till the 
early Paleozoic, by which time the 
familiar types of community structure 
were established.   -Hutchinson 1959



Who eats whom?

predator prey

Fossil food chain (290 MA)

Caught in the act (49 MA)



Every link is a hypothesis based on inferences

Lines of evidence for feeding links

Gut contents
Body size
By analogy with associated taxa
Damage patterns
Environmental deposition
Functional morphology
Stable isotopes
Trace fossils
Coprolites
The occasional smoking gun…

Certainty:
1 = possible
2 = probable
3 = certain

predator preypredator prey



Burgess Shale Food Web

S = 85, L = 559, L/S = 6.6, C = 0.08, TL = 2.99
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T = 85, L = 559, C = 0.077
TL = 2.99, MaxTL = 5.15

S = 33, L = 99, C = 0.091
TL = 2.84, MaxTL = 4.36

S = 48, L = 249, C = 0.108
TL = 2.72, MaxTL = 3.78

T = 142, L = 771, C = 0.038
TL = 2.42, MaxTL = 3.67

60%

Link 
Uncertainty

37%



St. Martin (terrestrial) Coachella Valley (terrestrial)

St. Marks (estuary)Bridge Brook (lake)

Burgess (marine)Chengjiang (marine)

Chesapeake Bay (estuary)
Skipwith (pond)

?Caribbean Reef (marine) Benguela (marine)



Normalized link distributions

all links
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Cambrian web MEs compared to modern web MEs

Top Int Bas HerbCan

Omn Loop

GenSDVulSD LinkSDMaxSimTL

ChLen ChSD ChNum

Path Clust

C Chengjiang Shale
B Burgess Shale
M Modern webs
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What about 
uncertainty?



Removing links: effect on ME comparisons

Chengjiang Shale Web Burgess Shale Web
 Low-Certainty Link Removals 
# Links 
Removed:

 
0 

 
9 

 
23 

 
47 

 
70 

 
93 

Top -0.83 -0.85 -0.85 -0.81 -0.63 -0.43
Int 0.25 0.45 0.49 0.63 0.72 1.50
Bas 0.75 0.58 0.30 -0.04 -0.53 -3.00
Herb -1.00 -0.96 -0.68 -0.48 -0.18 0.40
Can 0.00 0.04 0.06 -0.11 -0.06 -0.25
Omn 0.83 1.08 0.98 1.06 1.25 1.91
Loop -0.40 -0.34 -0.36 -0.29 -0.43 -0.50
ChLen 0.42 0.36 0.40 0.40 0.49 0.98
ChSD 0.99 0.92 0.79 0.51 0.35 0.54
ChNum 0.41 0.42 0.45 0.53 0.68 0.77
TL -0.22 -0.11 0.05 0.21 0.33 1.34
MaxSim -0.94 -0.57 -0.12 0.22 -0.07 -2.07
VulSD -1.62 -1.68 -1.40 -1.17 -0.78 -0.38
GenSD -0.20 -0.52 -0.51 -0.98 -1.62 -2.22
LinkSD -1.40 -1.83 -1.52 -1.66 -2.02 -2.83
Path -1.24 -1.65 -1.55 -1.46 -1.39 -1.49
Clust -0.81 -1.00 -0.99 -1.17 -1.62 -1.99
 

 Low-Certainty Link Removals 
# Links  
Removed: 
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59 

Top -1.20 -1.11 -1.18 -1.19 -1.21 -2.00
Int 0.20 0.28 0.34 0.31 0.29 1.00
Bas 1.33 1.28 0.98 1.05 1.08 1.00
Herb -1.00 -0.80 -0.77 -0.76 -0.52 -0.50
Can -1.67 -2.03 -1.73 -1.84 -1.65 -1.00
Omn 0.40 0.63 0.65 0.70 0.91 0.67
Loop -1.75 -2.15 -2.81 -2.99 -3.09 -2.50
ChLen 0.03 0.02 -0.09 -0.25 -0.26 0.32
ChSD 0.24 0.21 0.08 -0.12 -0.06 0.73
ChNum 0.85 1.02 0.89 0.74 0.90 1.81
TL -0.98 -1.04 -0.98 -1.37 -2.24 -7.24
MaxSim -0.02 -0.04 0.11 0.33 -0.30 -2.65
VulSD -1.84 -1.63 -1.53 -1.37 -1.68 -2.22
GenSD 0.59 0.47 0.43 0.48 0.54 0.78
LinkSD -2.20 -2.07 -2.20 -2.23 -2.22 -2.59
Path -2.82 -3.50 -3.51 -2.85 -2.57 2.49
Clust -0.91 -0.94 -0.86 -0.88 -0.93 -1.27
 

X

X

Niche model results very robust to exclusion of links
Cambrian & modern web structure remarkably similar



A few intriguing differences…

0.01

0.10

1.00

0.01

0.10

1.00

20

0.01

0.10

1.00

1010 20

Chengjiang Burgess

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

all links all links

vulnerabilityvulnerability

generalitygenerality

0 030 30

links

Higher LinkSD in both Cambrian webs
Reflects higher vulnerability to predation

Longer Path lengths in Chengjiang web
Reflects lower integration among taxa

More taxa in Loops in Chengjiang web
Reflects less hierarchical trophic organization



The structure of Cambrian & modern webs is 
very similar, with a few intriguing differences.

The niche model predicts the structure of all 
the webs well.

Results are robust to removal of uncertain or 
random links.

Network structure is similar across habitats 
and across deep time, regardless of the 
identity of the species.

Patterns
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Shared architecture across habitats and deep time is suggestive 
of strong constraints on trophic organization.

Differences in Cambrian structure may reflect a rapid transition
during de novo ecosystem construction to more stable, constrained
hierarchical, integrated trophic organization following the Cambrian
“explosion” of diversity, body plans, and trophic roles.

Underlying principles (???):
thermodynamics (MEP)
dynamical stability (structure dynamics)
natural selection (vulnerability constraints)

Principles?
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