Human Travel Patterns

Albert-László Barabási

Center for Complex Networks Research, Northeastern U. Department of Medicine, Harvard U.

BarabasiLab.com

Behav Ecol Sociobiol (2004) 55:223-230 DOI 10.1007/s00265-003-0700-6

ORIGINAL ARTICLE

Gabriel Ramos-Fernández · José L. Mateos · Octavio Miramontes · Germinal Cocho · Hernán Larralde · Bárbara Ayala-Orozco

Lévy walk patterns in the foraging movements of spider monkeys (*Ateles geoffroyi*)

Fig. 1a-d Daily trajectories of spider monkeys. a, b Adult females. c Adult male, with the section of the trajectory within the lower-left square amplified in d. Note that some individuals, like the adult female in b, returned to sleep close to where they started their daily travel

Animal Motion

Wandering Albatross

Vishwanatan *et. al.* Nature (1996); Nature (1999).

LETTERS

Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer

Andrew M. Edwards¹†, Richard A. Phillips¹, Nicholas W. Watkins¹, Mervyn P. Freeman¹, Eugene J. Murphy¹, Vsevolod Afanasyev¹, Sergey V. Buldyrev^{2,3}, M. G. E. da Luz⁴, E. P. Raposo⁵, H. Eugene Stanley² & Gandhimohan M. Viswanathan⁶

The study of animal foraging behaviour is of practical ecological reproduced in Supplementary Fig. 1 from the original raw data

Basking shark

Sims et al. Nature (2008).

Porbeagle shark Sims et al. Nature (2008).

Random Walks

f(∆r)=C

 $f(\Delta x) \sim \frac{1}{\Delta x^{1+\beta}}$

Human Motion

Brockmann et. al. Nature (2006)

A real human trajectory

Mobile Phone Users

Data Collection Limitations

We know only the tower the user communicates with, not the real location.

We know the location (tower) only when the user makes a call.

Interevent times are bursty (non-Poisson process— Power law interevent time distribution).

ALB, Nature 2005.

Interevent Times

$$P(\Delta T) = 1/\Delta T_a \mathcal{F}(\Delta T/\Delta T_a)$$
$$P(\Delta T) = (\Delta T)^{\alpha} \exp(\Delta T/\tau_c)$$
$$\alpha = 0.9 \pm 0.1 \quad \tau_c \approx 48 \text{ days}$$

A-L. B, *Nature* 2005.

J. Candia *et al.* J. Phys. A: Math. Theor. **41** (2008)

0.8

0.6

0.4

0.2

10

8

0

vr [km]

#changes/#calls

Mobile Phone Users

1. Each users follows a Lévy flight

2. The difference between individuals follows a power law

Understanding human trajectories

Center of Mass:

$$\vec{r}_{cm} = \frac{1}{n_p} \sum_{i=1}^{n_p} \vec{r_i}.$$

Radius of Gyration:

$$r_g^a(t) = \sqrt{\frac{1}{n_c^a(t)} \sum_{i=1}^{n_c^a} (\vec{r_i^a} - \vec{r}_{cm}^a)^2}$$

Characterizing human trajectories

Characterizing human trajectories

CCNR

Scaling in human trajectories

 $\beta_r = 1.65 \pm 0.15$

Mobile Phone Users

Scaling in human trajectories

Relationship between exponents

$$P(\Delta r) = \int_0^\infty P(\Delta r | r_g) P(r_g) dr_g$$

$$P(\Delta r) = \int_0^\infty r_g^{-\alpha} F(\frac{\Delta r}{r_g})(r_g + r_g^0) e^{-r_g/\kappa} dr_g$$

$$P(\Delta r) \approx \Delta r^{-\alpha - \beta_r + 1} \int_0^\infty x^{-\alpha} F(\frac{1}{x}) e^{x \Delta r/\kappa} dx$$

$$\beta = \alpha + \beta_r - 1$$

Jump size distribution $P(\Delta r) \sim (\Delta r)^{-\beta}$ represents a convolution between *population heterogeneity $P(r_g) \sim r_g^{-\beta r}$ *Levy flight with exponent α truncated by r_g

Return time distributions

CCNR

Mobile Phone Users

The shape of human trajectories

IR

The shape of human trajectories

$$\sigma_x^a = \sqrt{\frac{1}{n_c^a} \sum_{i=1}^{n_c^a} (x_i^a - x_{cm}^a)^2}$$

$$\sigma_y^a = \sqrt{\frac{1}{n_c^a} \sum_{i=1}^{n_c^a} (y_i^a - y_{cm}^a)^2}$$

Mobile Phone Viruses

Hypponen M. Scientific American Nov. 70-77 (2006).

March 06

June 06

Aug. 06

Spreading mechanism for cell phone viruses

Short range infection process (similar to biological viruses,

like influenza or SARS)

а

Long range infection process (similar to computer viruses)

MMS and Bluetooth Viruses

Social Network (MMS virus)

Palla, A.-L. B & Vicsek (2007). Onella et al, PNAS (2007)

González, Hidalgo and A-L.B., *Nature* 453, 779 (2008)

Spatial Spreading Patterns of Bluetooth and MMS virus

Spatial Spreading patterns of Bluetooth and MMS viruses

Driven by Human Mobility: Slow, but can reach all users with time.

Driven by the Social Network: Fast, but can reach only a finite fraction of users (the giant component).

Mobile Phone Users

Collaborators

Pu Wang Marta Gonzalez Cesar Hidalgo

www.BarabasiLab.com